首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purine analogs, 8-azaadenine, 8-azaguanine, 8-azaxanthine and 8-azahypoxanthine, and the pyrimidine analogs, 2-thiocytosine, 5-fluorouracil, 2-thiouracil and 6-azauracil, inhibited the induction of 2-dimensional growth in the gametophytes of the fern Asplenium nidus L. In contrast, thymine analogs such as 5-fluorodeoxyuridine, 2-thiothymine, 6-azathymine and 5-bromouracil caused non-specific growth inhibitions without suppressing 2-dimensional growth. Subinhibitory concentrations of 8-azaxanthine, 8-azahypoxanthine, and 2-thiouracil promoted both 1-dimensional and 2-dimensional phases of growth of the gametophytes. Inhibitory effects of the analogs were observed on treatment of the spores or of gametophytes of different ages. Gametophytes growing in the analogs for different periods of time recovered from inhibition on transfer to the basal medium.  相似文献   

2.
Gibberellic acid (GA) promoted sporulation in yeast when added to the sporulation medium. When added together with GA, metabolic inhibitors of RNA synthesis such as 8-azaguanine, 2-thiouracil, and actinomycin D suppressed selectively the promoting effect of GA on sporulation. The effect of 8-azaguanine and 2-thiouracil was alleviated by simultaneous addition of guanine and uracil, respectively. The promoting effect of GA on sporulation was also suppressed by inhibitors of protein synthesis such as ethionine, chloramphenicol, and puromycin. Methionine eliminated the inhibitory effect of ethionine on the GA action.  相似文献   

3.
Action of Inhibitors of RNA and Protein Synthesis on Cell Enlargement   总被引:10,自引:6,他引:4       下载免费PDF全文
Further studies with inhibitors of protein synthesis are presented to support the conclusion, drawn from work with chloramphenicol, that protein synthesis is a critical limiting factor in auxin-induced cell expansion. The indoleacetic acid-induced elongation of oat coleoptile sections was strongly inhibited by dl-p-fluorophenylalanine, and the inhibition is antagonized by phenylalanine. Puromycin at 10(-4)m very strongly inhibited the indoleacetic acid-induced growth of oat coleoptile and artichoke tuber sections and exerted a less powerful effect on pea stem sections. As found earlier with chloramphenicol, concentrations of puromycin effective in inhibiting the growth of coleoptile sections had quantitatively similar effects on protein synthesis, as measured by the incorporation of C(14)-leucine into protein of the coleoptile tissue. Several analogues of RNA bases were also tested, but while 8-azaguanine very strongly inhibited growth of artichoke tuber disks, 6-azauracil was the only one of this group clearly inhibitory to growth in coleoptile or pea stem sections. Actinomycin D actively inhibited both elongation and the incorporation of C(14)-leucine into protein in oat coleoptile sections. Inhibition of the 2 processes went closely parallel. Actinomycin D also powerfully inhibited growth of artichoke tuber disks. All the compounds effective in inhibiting growth generally inhibited the uptake of leucine as well.The possibility that auxin causes cell enlargement in plants by inducing the synthesis of a messenger RNA and of one or more new but unstable enzymes, is discussed. Possible but less favored alternative explanations are: A) that auxin induces synthesis of a wall protein, or B) that the continued synthesis of some other unstable protein (by a process independent of auxin) may be a prerequisite for cell enlargement.  相似文献   

4.
5.
Acid-induced growth was compared to auxin-induced growth. After a transient pH 4-induced increase in the elongation rate was completed, auxin could still induce an enhanced rate of elongation in soybean (Glycine max) hypocotyl segments. This auxin response occurred both when the medium was changed to pH 6 before auxin addition, and when the auxin was added directly to the pH 4 medium. This postacid response to auxin was persistent, and quite unlike a postacid response to acid, which was again shortlived. One mm N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (pH 7) inhibited the first response to auxin (the first response to auxin being similar to the acid response), but not the second response. This did not appear to be simply a hydrogen ion neutralizing effect, however, since a 50-fold increase in buffer concentration at pH 6 did not inhibit the first response. Decrease in the pH of the external medium, previously shown to occur with excised soybean hypocotyl segments, was not affected by auxin. Furthermore, this pH drop, during which the cells appear to be adjusting their external pH to about 5.4, did not result in an increased rate of elongation. Addition of auxin after the equilibrium pH had been attained did not alter the pH, but it did increase the rate of elongation, eliciting a normal auxin response. It was concluded that hydrogen ions do not mediate in long term auxin-induced elongation in soybean hypocotyl.  相似文献   

6.
A. A. Khan 《Planta》1966,68(1):83-87
Summary Germination of White Paris lettuce seeds is inhibited by 2-thiouracil up to 24 hours. This inhibition is reversed by RNA precursors only. Seedling growth of lettuce is inhibited by 2-thiouracil and 5-fluorouracil; and white the effect of 2-thiouracil is counteracted by RNA precursors, inhibition due to 5-fluorouracil is not reversed significantly by any nucleic acid precursors. Possibly 2-thiouracil controls germination and seedling growth by interfering with RNA synthesis, while the effect of 5-fluorouracil is non-specific.In the presence of gibberellic acid, 5-fluorouracil and 2-thiouracil are relatively ineffective in causing inhibition of hypocotyl growth. Mechanism of gibberellic acid action remains obscure.  相似文献   

7.
The sprouting of immature bulbils of Laportea bulbifera andpartially dormant (in-sufficiently chilled) mature bulbils ofL. bulbifera, Elatostema involucratum and E. umbellatum waspromoted by inhibitors of nucleic acid and protein synthesis(8-azaguanine, 5-fluorouracil, 2-thiouracil, ethionine, canavaninesulfate, p-fluorophenylalanine and cycloheximide in Laporteaand 5-fluorouracil, cycloheximide and chloramphenicol in Elatostema).However, the sprouting of nondormant (chilled) mature bulbilsof L. bulbifera was not promoted, but slightly suppressed whenthese inhibitors (especially, 8-azaguanine, cycloheximide andchloramphenicol) were applied either during or after chillingtreatment These results suggest that the two counteracting systems,dormancy-inducing and -breaking which involve nucleic acid andprotein synthesis participate in the dormancy regulation. (Received December 2, 1977; )  相似文献   

8.
Auxin-induced cell elongation in oat coleoptile segments was inhibited by galactose; removal of galactose restored growth. Galactose did not appear to affect the following factors which modify cell elongation: auxin uptake, auxin metabolism, osmotic concentration of cell sap, uptake of tritium-labeled water, auxin-induced wall loosening as measured by a decrease in the minimum stress-relaxation time and auxininduced glucan degradation. Galactose markedly prevented incorporation of [14C]-glucose into cellulosic and non-cellulosic fractions of the cell wall. It was concluded that galactose inhibited auxin-induced long-term elongation of oat coleoptile segments by interfering with cell wall synthesis.  相似文献   

9.
Burns RG  Ingle J 《Plant physiology》1968,43(12):1987-1990
The RNA base analogues, 5-fluorouracil, 2-thiouracil, and 8-azaguanine, inhibit the growth of Dryopteris borreri, but do not prevent the transition from filamentous to biplanar growth. Transition, which occurs only when the filament has developed to 4 or 5 cells, may be considerably delayed, due to inhibition of filamentous growth, but it always occurs when the critical cell number of the filament is reached. Furthermore, the inhibitors show only a marginal differential effect on biplanar compared to filamentous growth when the growth rates are determined from kinetic studies. It is suggested that the selective effects previously reported may result from the experimental techniques used, coupled with the actual growth characteristics of the gametophyte.  相似文献   

10.
Effects of several inhibitors of DNA, RNA and protein synthesison the reappearance of a once faded-out light interruption rhythmin a long-day duckweed, Lemna gibba G 3, were studied. The reappearancewas not affected by inhibitors of RNA and protein synthesis;i.e., 2-thiouracil, 8-azaguanine, ethionine and chloramphenicol,but was suppressed by inhibitors of DNA synthesis; i. e., 5-fluorodeoxyuridine,5-fluorouracil and mitomycin C only when these were appliedduring the light period for perturbation. We concluded that synthesis of a new DNA species during thelight period was required for the recurrence of this rhythm. (Received September 25, 1968; )  相似文献   

11.
Cline MG  Rehm MM 《Plant physiology》1974,54(2):160-163
The effects of cordycepin (3'-deoxyadenosine), an RNA synthesis inhibitor, on auxin-induced elongation in Avena coleoptile segments were studied with a position-sensing transducer. Cordycepin rapidly inhibited auxin-stimulated growth in the coleoptile segments whether added before, at the same time as, or after, the 2 mum auxin treatment. Midcourse additions of 100, 50, and 25 mug/ml cordycepin inhibited auxin-promoted elongation in an average of 18, 22, and 35 minutes, respectively. Additions of cordycepin before or at the same time as the auxin treatment partially inhibited the magnitude of the subsequent auxin-promoted growth but did not appreciably alter the latent period of the auxin response. It was concluded that if cordycepin is inhibiting the synthesis of RNA required for growth, the decay time for this RNA may be considerably shorter than that suggested in the literature from actinomycin D experiments. Preliminary kinetic evidence indicated that cordycepin does not inhibit auxin-induced elongation by acting as a respiratory inhibitor. Studies in mung bean shoot mitochondria demonstrated that cordycepin has no effect on respiration, respiratory control, or ADP/oxygen ratios.  相似文献   

12.
The localization of the auxin receptor relevant to the control of elongation growth is still a matter of controversy. Auxin-induced elongation of maize coleoptile segments was measured by means of a high resolution auxanometer. When indole-3-acetic acid (IAA) was removed from the bathing solution, a rapid cessation of auxin-induced elongation was detected. This decline was delayed when the auxin efflux carrier was blocked by the phytotropins naphthylphthalamic acid (NPA) and pyrenoylbenzoic acid (PBA) or by triiodobenzoic acid (TIBA). The IAA concentration in NPA-pretreated segments was 2–3 times higher than in NPA-free controls 35 min after the removal of IAA in the bathing medium.
A similar rapid drop of growth after removal of auxin was observed for the rapidly-transported synthetic auxin, naphthaleneacetic acid (NAA). When the auxin efflux was blocked, growth induced by NAA was sustained much longer than IAA-stimulated elongation.
In comparison with NAA, the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is known to be excreted very slowly by the efflux carrier. 2,4-D-induced growth remained at a stimulated level when the auxin was washed off, even in the absence of any auxin efflux inhibitor. We conclude from these results that the presence of intracellular auxin is a necessary and sufficient condition for sustained auxin-induced elongation growth, at least for the phases during the 2 h after its application. Consequently, we postulate the existence of an intracellular auxin receptor relevant to the control of growth.  相似文献   

13.
Inhibition of Cell Elongation in Avena Coleoptile by Hydroxyproline   总被引:6,自引:6,他引:0       下载免费PDF全文
A study has been made of the hydroxyproline-induced inhibition of elongation of Avena coleoptile tissues. The isomers of 4-hydroxyproline differ in their effectiveness; only the L isomers are growth inhibitors with the cis form (allohydroxyproline) being more effective than the trans form (hydroxyproline).Hydroxyproline differs from other amino acid antagonists and protein synthesis inhibitors in respect to 2 characteristics of the growth inhibition. First, a certain increment of auxin-induced elongation must take place following addition of hydroxyproline before the growth is inhibited. In contrast, pretreatment with other amino acid antagonists or protein synthesis inhibitors completely eliminates the ability of Avena coleoptile sections to respond to auxin. Secondly, sucrose markedly increases the magnitude of the hydroxyproline inhibition; i.e., sucrose acts to inhibit rather than promote growth when in the presence of hydroxyproline.It appears that hydroxyproline is a specific inhibitor for the synthesis of some factor which is utilized in elongation. Following addition of hydroxyproline, auxin-induced elongation continues until the pool of this factor is exhausted; then elongation is inhibited.  相似文献   

14.
Cleland RE 《Plant physiology》1992,99(4):1556-1561
Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.  相似文献   

15.
Germinating spores of the fern Onoclea sensibilis L. were grown in darkness, so that they developed as filaments (protonemata). Brief daily exposure of the filaments to red, far-red or blue light increased the rate of filament elongation. Filament elongation was also promoted by indoleacetic acid. When filament elongation was promoted with both indoleacetic acid and exposure to light, the growth promotions caused by red and far-red light were additive to auxin-induced growth. Blue light promoted elongation only at sub-optimal concentrations of auxin. Elongation induced by guanine was additive to red- and far-red-induced elongation. Gibberellic acid had no effect on elongation under any condition. Blue-light-induced elongation resembled auxin-induced elongation in its requirement for exogenous sucrose and sensitivity to inhibition by parachlorophenoxyisobutyric acid. Red and far-red light were active regardless of the presence or absence of sucrose and promoted elongation at a concentration of parachlorophenoxyisobutyric acid which completely inhibited blue-light-induced elongation.  相似文献   

16.
Using auxin-responsive diploid strains of Saccharomyces cerevisiae and S. ellipsoideus, we studied the role of cell wall-degrading enzymes in the auxin-induced cell expansion. Highly purified fungal β-l,3-glucanase added to cell suspension caused cell expansion in these strains. The cell expansion induced by auxin was inhibited by the addition of õ-glucono-lactone, which inhibited the activity of a crude β-l,3-gluca-nase preparation from yeast in a competitive manner. Laminarinase activity was significantly higher in the extract from auxin-treated yeast cells than in the extract of cells not treated with auxin. These results support the idea that auxin induces expansion of yeast cells of certain strains through enhancement of the activity of wall polysaccharide-degrading enzymes.  相似文献   

17.
Brassinolide-induced elongation and auxin   总被引:2,自引:0,他引:2  
Segments from the hook and subhook zone of the stem of 6-day-old etiolated Pisum sativum L. cv. Victory Freezer seedlings were used to study the relationship between brassinolide and auxin in the promotion of elongation. Minor changes in exogenous indole-3-acetic acid or4-chloroindole-3-acetic acid concentration affected the kinetics markedly and the ethylene generator ethephon overcame brassinolide-induced elongation in an antagonistic interaction. Brassinolide-induced elongation was markedly inhibited by low concentrations of the cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile, and diagnostic concentrations of the antiauxin 2-( p -chlorophenoxy) isobutyric acid did not affect brassinolide-induced elongation. As the characteristics of auxin-induced growth are not displayed in brassinolide-induced elongation of the upper stem segment, it is proposed that brassinolide does not depend on auxin as a mediator in the promotion of elongation of younger tissues but that it can interact in a very complex manner with auxin. In the elongation of more mature tissues, and in bending responses, brassinolide probably accelerates auxin effects. When split, the upper stem segment was unusual in its lack of specific response to growth regulators, and the slight relief of epidermal tension.  相似文献   

18.
The inhibition of two-dimensional growth in the gametophytesof Asplenium nidus induced by purine and pyrimidine analoguesand the reversal of inhibition by natural purine and pyrimidinebases and their derivatives have been studied. Adenine and guanineand their ribosides and ribotides were more effective than cytosine,uracil, thymine, and their derivatives in preventing the inhibitiondue to 8-azaadenine and 8-azaguanine. Likewise, the inhibitoryeffects of 2-thiocytosine, 2-thiouracil,6-azauracil, and 5-fluorouracilwere overcome by the pyrimidines and their derivatives, butnot usually by the purines.Combinations of two purine analoguesor two pyrimidine analogues or one purine analogue and one pyrimidineanalogue inhibited growth more effectively than single compounds.The combined inhibitions were maximally reversed when both naturalbases or their derivatives were added to the medium. It is concludedthat there is a requirement for both purines and pyrimidinesof ribonucleic acid in the induction of two-dimensional growthin the gametophytes of Asplenium nidus.  相似文献   

19.
Robert Cleland 《Planta》1970,95(3):218-226
Summary The inhibitors cycloheximide and puromycin have been used to examine the relationship between protein synthesis and wall extensibility, as measured with an Instron, in Avena coleoptile segments. Cycloheximide at 4 g/ml almost totally inhibits both auxin-induced cell elongation and protein synthesis with only a slight lag. Wall extensibility is unaffected by the inhibitor if auxin is absent. If added prior to auxin, cycloheximide prevents auxin-induced wall loosening while if added after auxin it causes a substantial decline in the wall extensibility. With puromycin there is a 2–4 hr lag before growth and wall loosening are inhibited. These results support the conclusions that the proteins needed for wall loosening are unstable, and that continued protein synthesis is necessary to maintain the wall loosening process.  相似文献   

20.
Many aspects of plant development are regulated by antagonistic interactions between the plant hormones auxin and cytokinin, but the molecular mechanisms of this interaction are not understood. To test whether cytokinin controls plant development through inhibiting an early step in the auxin response pathway, we compared the effects of cytokinin with those of the dgt (diageotropica) mutation, which is known to block rapid auxin reactions of tomato (Lycopersicon esculentum) hypocotyls. Long-term cytokinin treatment of wild-type seedlings phenocopied morphological traits of dgt plants such as stunting of root and shoot growth, reduced elongation of internodes, reduced apical dominance, and reduced leaf size and complexity. Cytokinin treatment also inhibited rapid auxin responses in hypocotyl segments: auxin-stimulated elongation, H(+) secretion, and ethylene synthesis were all inhibited by cytokinin in wild-type hypocotyl segments, and thus mimicked the impaired auxin responsiveness found in dgt hypocotyls. However, cytokinin failed to inhibit auxin-induced LeSAUR gene expression, an auxin response that is affected by the dgt mutation. In addition, cytokinin treatment inhibited the auxin induction of only one of two 1-aminocyclopropane-1-carboxylic acid synthase genes that exhibited impaired auxin inducibility in dgt hypocotyls. Thus, cytokinin inhibited a subset of the auxin responses impaired in dgt hypocotyls, suggesting that cytokinin blocks at least one branch of the DGT-dependent auxin response pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号