首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of the importance of the genetics of Trypanosoma cruzi in determining the clinical course of Chagas disease will depend on precise characterisation of the parasites present in the tissue lesions. This can be adequately accomplished by the use of hypervariable nuclear markers such as microsatellites. However the unilocal nature of these loci and the scarcity of parasites in chronic lesions make it necessary to use high sensitivity PCR with nested primers, whose design depends on the availability of long flanking regions, a feature not hitherto available for any known T. cruzi microsatellites. Herein, making use of the extensive T. cruzi genome sequence now available and using the Tandem Repeats Finder software, it was possible to identify and characterise seven new microsatellite loci – six composed of trinucleotide (TcTAC15, TcTAT20, TcAAT8, TcATT14, TcGAG10 and TcCAA10) and one composed of tetranucleotide (TcAAAT6) motifs. All except the TcCAA10 locus were physically mapped onto distinct intergenic regions of chromosome III of the CL Brener clone contigs. The TcCAA10 locus was localised within a hypothetical protein gene in the T. cruzi genome. All microsatellites were polymorphic and useful for T. cruzi genetic variability studies. Using the TcTAC15 locus it was possible to separate the strains belonging to the T. cruzi I lineage (DTU I) from those belonging to T. cruzi II (DTU IIb), T. cruzi III (DTU IIc) and a hybrid group (DTU IId, IIe). The long flanking regions of these novel microsatellites allowed construction of nested primers and the use of full nested PCR protocols. This strategy enabled us to detect and differentiate T. cruzi strains directly in clinical specimens including heart, blood, CSF and skin tissues from patients in the acute and chronic phases of Chagas disease.  相似文献   

2.
, and 1988. Experimental American leishmaniasis and Chagas' disease in the Brazilian squirrel monkey: cross immunity and electrocardiographic studies of monkeys infected with Leishmania braziliensis and Trypanosoma cruzi. International Journal for Parasitology 18: 1053–1059. Adult, laboratory-bred squirrel monkeys (Saimiri sciureus) previously infected with either Leishmania braziliensis braziliensis or L. b. panamensis were challenge infected with blood-form trypomastigotes of Trypanosoma cruzi (Brazil strain). Monkeys previously infected with T. cruzi were challenged with stationary phase promastigote forms of L. b. braziliensis. Monkeys were examined during the course of challenge for evidence of infection, electrocardiographic alterations and parasite-specific antibody responses. T. cruzi epimastigotes were cultured from the blood of monkeys up to 3 months after challenge with this parasite. Unulcerated cutaneous lesions appeared and persisted in monkeys challenged with L. b. braziliensis. The formation of satellite lesions was observed in one monkey. Increased QRS intervals were not observed in T. cruzi challenged monkeys without prior cardiac irregularities and QRS left axis shifts were observed in only two of these monkeys. Elevated titers of parasite binding IgM and IgG specific for both T. cruzi and L. braziliensis were observed in all monkeys following challenge. These results indicate that prior infection with T. cruzi or L. braziliensis does not protect against heterologous challenge infection with these organisms. However, prior infection with Leishmania parasites may provide some protection against chagasic cardiopathies.  相似文献   

3.
Fifty fresh isolates of Trypanosoma cruzi from Triatoma dimidiata vectors and 31 from patients with Chagas disease were analysed for DNA polymorphisms within the 432-bp core region of the cruzipain gene which encodes the active site of cathepsin L-like cystein proteinase. The cruzipain gene showed signs of polymorphism consisting of four different DNA sequences in Central and South American isolates of T. cruzi. The PCR fragments of Guatemalan isolates could be divided into three groups, Groups 1, 2 and 3, based on different patterns of single-stranded DNA conformation polymorphism. All of the strains isolated from Brazil, Chile, and Paraguay, except for the CL strain, showed a Group 4 pattern. Two to four isolates from each group were analysed by cloning and sequencing. A silent mutation occurred between Groups 1 and 2, and five nucleotides and two aa substitutions were detected between Groups 1 and 3. The DNA sequence of Group 4 contained five nucleotides and one aa substitution from Group 1. All of the DNA sequences corresponded well with the single-stranded DNA conformation polymorphism. The Group 1 isolates, the majority in the Guatemalan population (70/81, 86.4%), were isolated from both triatomines and humans, but Group 3 were isolated only from humans. Moreover, the Group 2 isolates were detected only in triatomine vectors (9/50; 18%), but never in humans (0/32, P<0.05) suggesting that this group has an independent life-cycle in sylvatic animals and is maintained by reservoir hosts other than humans.  相似文献   

4.
Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit I sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (5.9–30.8%) was usually greater than in cytochrome c oxidase subunit I (2.5–18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.  相似文献   

5.
Outbreaks of severe acute Chagas’ disease acquired by oral infection, leading to death in some cases, have occurred in recent years. Using the mouse model, we investigated the basis of such virulence by analyzing a Trypanosoma cruzi isolate, SC, from a patient with severe acute clinical symptoms, who was infected by oral route. It has previously been shown that, upon oral inoculation into mice, T. cruzi metacyclic trypomastigotes invade the gastric mucosal epithelium by engaging the stage-specific surface glycoprotein gp82, whereas the surface molecule gp90 functions as a down-modulator of cell invasion. We found that, when orally inoculated into mice, metacyclic forms of the SC isolate, which express high levels of gp90, produced high parasitemias and high mortality, in sharp contrast with the reduced infectivity in vitro. Upon recovery from the mouse stomach 1 h after oral inoculation, the gp90 molecule of the parasites was completely degraded, and their entry into HeLa cells, as well as into Caco-2 cells, was increased. The gp82 molecule was more resistant to digestive action of the gastric juice. Host cell invasion of SC isolate metacyclic trypomastigotes was augmented in the presence of gastric mucin. No alteration in infectivity was observed in T. cruzi strains CL and G which were used as references and which express gp90 molecules resistant to degradation by gastric juice. Taken together, our findings suggest that the exacerbation of T. cruzi infectivity, such as observed upon interaction of the SC isolate with the mouse stomach components, may be responsible for the severity of acute Chagas’ disease that has been reported in outbreaks of oral T. cruzi infection.  相似文献   

6.
7.
The genus Lycoseris is revised to include eleven species of dioecious subshrubs with mostly scrambling branches. It is distributed from Guatemala to northwestern and western South America, reaching south to Bolivia and southern Brazil. Three new species are described, viz. L. colombiana, L. minor , and L. peruviana. One new combination is made, viz. L. trinervis ssp. altissima.  相似文献   

8.
Three different concentrations (1, 10 and 50 μg/ml) of lyophilized hydroalcoholic crude extract of Pfaffia glomerata roots were assayed in vitro against strains of Trypanosoma cruzi (Y) and Leishmania braziliensis. It was observed that P. glomerata hydroalcoholic extract was relatively active within the tested concentrations for L. (V.) braziliensis, but inactive against T. cruzi. Despite the fact that both protozoans belong to the Trypanosomatidae family, we suggest that the difference observed for activity should be related to the biological differences between the two parasite species.  相似文献   

9.
Mini- and microsatellite sequences show high levels of variation and therefore provide excellent tools for both the genotyping and population genetic analysis of parasites. Herein we describe the identification of a panel of 11 polymorphic microsatellites and 49 polymorphic minisatellites of the protozoan haemoparasite Theileria parva. The PCR products were run on high resolution Spreadex gels on which the alleles were identified and sized. The sequences of the mini- and microsatellites were distributed across the four chromosomes with 16 on chromosome 1, 12 on chromosome 2, 14 on chromosome 3 and 18 on chromosome 4. The primers from the 60 sequences were tested against all the Theileria species that co-infect cattle in East and Southern Africa and were found to be specific for T. parva. In order to demonstrate the utility of these markers, we characterised eight tissue culture isolates of T. parva isolated from cattle in widely separated regions of Eastern and Southern Africa (one from Zambia, one from Uganda, two from Zimbabwe, four from Kenya) and one Kenyan tissue culture isolate from Cape buffalo (Syncerus caffer). The numbers of alleles per locus range from three to eight indicating a high level of diversity between these geographically distinct isolates. We also analysed five isolates from cattle on a single farm at Kakuzi in the central highlands of Kenya and identified a range of one to four alleles per locus. Four of the Kakuzi isolates represented distinct multilocus genotypes while two exhibited identical multilocus genotypes. This indicates a high level of diversity in a single population of T. parva. Cluster analysis of multilocus genotypes from the 14 isolates (using a neighbour joining algorithm) revealed that genetic similarity between isolates was not obviously related to their geographical origin.  相似文献   

10.
Mice infected with Trypanosoma cruzi develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC). After normal or infected mice were primed with SRBC, their spleen cells were restimulated 4 days later with SRBC in Mishell-Dutton cultures and found to mount hyperaugmented IgM anti-SRBC responses. It was also demonstrated that T-cells derived from normal mice primed in vivo 4 days previously with SRBC, and subsequently added to cultures of spleen cells from T. cruzi-infected mice, enhanced anti-SRBC DPFC responses in a dose-dependent fashion. These results show that functional help provided by T-cells activated during an in vivo priming and exposed to an in vitro challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in the spleen cell cultures from T. cruzi-infected mice.  相似文献   

11.
Trypanosoma cruzi infection by oral route constitutes the most important mode of transmission in some geographical regions, as illustrated by reports on microepidemics and outbreaks of acute Chagas' disease acquired by ingestion of food contaminated with parasites from triatomine insects. In the mouse model, T. cruzi metacyclic trypomastigotes invade the gastric mucosal epithelium, a unique portal of entry for systemic infection. High efficiency of metacyclic forms in establishing infection by oral route is associated with expression of gp82, a stage-specific surface molecule that binds to gastric mucin and to epithelial cells. Gp82 promotes parasite entry by triggering the signaling cascades leading to intracellular Ca2+ mobilization. T. cruzi strains deficient in gp82 can effectively invade cells in vitro, by engaging the Ca2+ signal-inducing surface glycoprotein gp30. However, they are poorly infective in mice by oral route because gp30 has low affinity for gastric mucin. Metacyclic forms also express gp90, a stage-specific surface glycoprotein that binds to host cells and acts as a negative regulator of invasion. T. cruzi strains expressing gp90 at high levels, in addition to gp82 and gp30, are all poor cell invaders in vitro. Notwithstanding, their infectivity by oral route may vary because, unlike gp82 and gp30, which resist degradation by pepsin in the gastric milieu, the gp90 isoforms of different strains have varying susceptibility to peptic digestion. For instance, in a T. cruzi isolate, derived from an acute case of Chagas' disease acquired by oral route, gp90 is extensively degraded by gastric juice in the mouse stomach and this renders the parasite highly invasive towards target cells. If such an exacerbation of infectivity occurs in humans, it may be responsible for the severity of the disease reported in outbreaks of oral infection.  相似文献   

12.
In order to investigate the natural route of infection of nude and normal BALB/c mice with Trypanosoma cruzi via the skin, a drop of vector faeces/urine containing metacyclic trypomastigotes was placed onto the puncture site of a bite from Triatoma infestans. The periods of exposure, i.e. until removal of flagellates from the skin, and the time elapsed until surgical removal of the skin around the puncture were varied. After 15 min of exposure, T. cruzi developed in all nude mice without surgery, and in four of 10 mice if the puncture region of the skin was removed directly after exposure. In a shaved puncture region, 5 min of exposure were sufficient to infect all normal BALB/c mice without surgery and one of four mice with direct removal of the puncture region. Longer periods of exposure or time until removal of the skin only sometimes resulted in higher infection rates. Prepatent periods and the development of parasitaemia varied irrespective of the period of exposure or the period until skin removal at the puncture site. The importance of these findings is that they clearly prove that T. cruzi can rapidly invade the host via the puncture site of the bite of the vector and that at least some parasites are immediately transported away from this site.  相似文献   

13.
The nuclear ribosomal internal transcribed spacer 1 (ITS1) was sequenced for Anastrepha fraterculus (Wiedemann, 1830) originating from 85 collections from the northern and central Andean countries of South America including Argentina (Tucumán), Bolivia, Perú, Ecuador, Colombia, and Venezuela. The ITS1 regions of additional specimens (17 collections) from Central America (México, Guatemala, Costa Rica, and Panamá), Brazil, Caribbean Colombia, and coastal Venezuela were sequenced and together with published sequences (Paraguay) provided context for interpretation. A total of six ITS1 sequence variants were recognized in the Andean region comprising four groups. Type I predominates in the southernmost range of Anastrepha fraterculus. Type II predominates in its northernmost range. In the central and northern Andes, the geographic distributions overlap and interdigitate with a strong elevational effect. A discussion of relationships between observed ITS1 types and morphometric types is included.  相似文献   

14.
Naphtho[2,3-b]thiophen-4,9-quinone and five derivatives were prepared using the Friedel-Crafts reaction and tandem-lithiation of aromatic diethylamides. These quinones were evaluated for their trypanocidal and anti-plasmodial activities by their effects on: (1) growth of epimastigote forms of Trypanosoma cruzi in vitro, (2) lysis of trypomastigote forms of T. cruzi in murine blood, (3) growth of Plasmodium falciparum in vitro, and (4) inhibition of the recombinant enzyme trypanothione reductase. The parent compound, naphtho[2,3-b]thiophen-4,9-quinone (3a), was among the most active quinone tested in vitro against P. falciparum at 0.2 μM. However, it was inactive against P. berghei-infected mice treated with 2.3 mmol/kg daily for 5 days. Most of the quinones prepared were active against T. cruzi epimastigotes in culture but exhibited weak activity at 4 °C against trypomastigotes in murine blood as well against the enzyme trypanothione reductase. Further structural modifications will be necessary to improve the in vivo activity of the naphthothiophenquinones.  相似文献   

15.
, , and 1986. Inhibition of lysosomal fusion by Trypanosoma cruzi in peritoneal macrophages. International Journal for Parasitology 16: 629–632. Prelabelling of lysosomes with acridine orange has been performed in order to verify whether metacyclic forms of Trypanosoma cruzi are capable of inhibiting lysosomal fusion during the first moments of interiorization in non-sensitized mouse peritoneal macrophages. Thus, the degree of degranulation (lysosomal fusion) in metacyclic forms is low while epimastigote forms present higher levels. When epimastigote forms are made to interact with the macrophages in the presence of various concentrations of the medium used for transformations of epimastigotes to metacyclic forms or when interaction was performed in the presence of NH4Cl, the degree of degranulation was similar to that obtained when interaction was carried out with metacyclic forms.

The present results suggest that during the first moments of the interaction of T. cruzi, only the infective forms may increase the cytoplasmic pH value of the host phagocytic cell, avoiding lysosomal fusion and the subsequent destruction of the parasite.  相似文献   


16.
Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in S?o Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits.  相似文献   

17.
Toxoplasma gondii possesses a highly active nucleoside triphosphate hydrolase, which has been shown to be an immunodominant antigen in mice and humans. Two isoforms (I and II) which exhibit different activities with respect to hydrolysis of ATP exist. Past studies suggest that all strains of T. gondii contain the less active nucleoside triphosphate hydrolase II, whilst only virulent strains contain the nucleoside triphosphate hydrolase I isoform. In order to further investigate the correlation between nucleoside triphosphate hydrolase isoform and biological significance, we cloned and expressed as glutathione S-transferase fusion proteins the full-length nucleoside triphosphate hydrolase I and II isoforms and two truncations of the nucleoside triphosphate hydrolase I isoform in Escherichia coli. We then used ELISAs with the full-length recombinant nucleoside triphosphate hydrolases as antigens to examine 188 naturally infected T. gondii-positive sera and 83 T. gondii-negative sera for antibody reactivity. All positive sera reacted to T. gondii whole tachyzoite lysate antigen, 31 sera reacted to both nucleoside triphosphate hydrolase isoforms, three sera reacted specifically to nucleoside triphosphate hydrolase I and two sera reacted to only nucleoside triphosphate hydrolase II. Immunoblot analysis of the five sera reacting to either nucleoside triphosphate hydrolase I or II revealed both quantitative and qualitative differences in reactivity to the two isoforms. Comparative immunoblot analysis using the truncations of the nucleoside triphosphate hydrolase I isoform, and one of these positive sera identified a presumptive differential epitope between the nucleoside triphosphate hydrolase I and II isoforms within an 81-aa region (aa 445–526) at the C-terminus of the nucleoside triphosphate hydrolase I isoform. This differential reactivity was further localised to the 12-residue region of greatest variability between the two isoforms (residues 488–499) using synthetic peptides. This is the first report where naturally infected human sera have been used to identify a differential epitope. Because this region is essential for substrate binding, an antibody response to this region may play some role in inhibition of this highly active enzyme.  相似文献   

18.
Since 1995, Trichinella larvae have been detected in 39.5% of farmed crocodiles (Crocodylus niloticus) in Zimbabwe. Morphological, biological, biochemical and molecular studies carried out on one isolate from a farmed crocodile in 2001 support the conclusion that this parasite belongs to a new species, which has been named Trichinella zimbabwensis n.sp. This species, whose larvae are non-encapsulated in host muscles, infects both reptiles and mammals. The morphology of adults and larvae is similar to that of Trichinella papuae. Adults of T. zimbabwensis cross in both directions with adults of T. papuae (i.e. male of T. zimbabwensis per female of T. papuae and male of T. papuae per female of T. zimbabwensis), producing F1 offspring which produce very few and less viable F2 larvae. Muscle larvae of T. zimbabwensis, like those of T. papuae, do not infect birds. Three allozymes (of a total of 10) are diagnostic between T. zimbabwensis and T. papuae, and five are diagnostic between T. zimbabwensis and Trichinella pseudospiralis, the third non-encapsulated species. The percentage of the pairwise alignment identity between T. zimbabwensis and the other Trichinella species for the cytochrome oxidase subunit I gene, the large subunit ribosomal-DNA (mt-lsrDNA) gene and the expansion segment five, shows that T. zimbabwensis is more similar to the two non-encapsulated species T. papuae (91% for cytochrome oxidase I; 96% for mt-lsrDNA; and 88% for expansion segment five) and T. pseudospiralis (88% for cytochrome oxidase I; 90% for mt-lsrDNA; and 66–73% for expansion segment five) than to any of the encapsulated species (85–86% for cytochrome oxidase I; 88–89% for mt-lsrDNA; and 71–79% for expansion segment five). This is the first non-encapsulated species discovered in Africa. The finding of a new Trichinella species that infects both reptiles and mammals suggests that the origin of Trichinella parasites dates back further than previously believed and can contribute to understanding the phylogeny and the epidemiology of the genus Trichinella.  相似文献   

19.
Several derivatives of geraniol, geranylacetone, and farnesol bearing carbonate and thiolcarbonate functional groups as well as several derivatives of 4-phenoxyphenol were synthesized and tested for their respective biological activity as growth inhibitors for Trypanosoma cruzi, and for inhibition of tritium-labelled thymidine incorporation in T. cruzi cells. The results indicated that some JHA showed important activity against the development of the cells.  相似文献   

20.
The glycoprotein gp82 is a GPI-anchored cell surface protein of Trypanosoma cruzi and is involved in cell invasion. Gp82 is encoded by multiple genes. To investigate the genetic basis of its biological function, we analyzed structure and expression of gp82 multigene family members in the Peruvian and Guatemalan strains. Three major groups of gp82 genes (A, B and C) were categorized by analyzing multiple DNA clones from the genomic PCR products. Within each group, 95–97% homology was observed, whereas between the groups, homology was 67–79%. The copy numbers of groups A, B and C as determined by real-time PCR were 18, 8 and 7 copies, respectively, in the Peru-2 strain. Significant elevation of the mRNA expression levels (5–10 times more) of all the subfamily genes was observed in the metacyclic stage compared with the epimastigote stage. When we focused on the binding motif sequence reported previously, we found substantial difference between that of A and C. However, the peptide inhibition invasion assay showed no functional difference. Taken together, we demonstrated that three subfamilies of gp82 were in the genome of T. cruzi and maintained their functional structure, and that the mRNA expressions of those genes were equally controlled in a stage-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号