首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Is invasion success explained by the enemy release hypothesis?   总被引:10,自引:0,他引:10  
A recent trend in invasion ecology relates the success of non‐indigenous species (NIS) to reduced control by enemies such as pathogens, parasites and predators (i.e. the enemy release hypothesis, ERH). Despite the demonstrated importance of enemies to host population dynamics, studies of the ERH are split – biogeographical analyses primarily show a reduction in the diversity of enemies in the introduced range compared with the native range, while community studies imply that NIS are no less affected by enemies than native species in the invaded community. A broad review of the invasion literature implies at least eight non‐exclusive explanations for this enigma. In addition, we argue that the ERH has often been accepted uncritically wherever (i) NIS often appear larger, more fecund, or somehow ‘better’ than either congeners in the introduced region, or conspecifics in the native range; and (ii) known enemies are conspicuously absent from the introduced range. However, all NIS, regardless of their abundance or impact, will lose natural enemies at a biogeographical scale. Given the complexity of processes that underlie biological invasions, we argue against a simple relationship between enemy ‘release’ and the vigour, abundance or impact of NIS.  相似文献   

2.
The biogeographic patterns of abundance and prevalence of helminths from Liza haematocheilus were studied across its native (Sea of Japan) and introduced (Sea of Azov) distribution ranges. Abundance-occupancy relationships (AORs) were tested for the core-satellite and enemy release (ERH) species hypotheses in eight and 14 host samples from the native and introduced host ranges, respectively. The AOR model fitted parasite data extremely well, irrespective of whether the host or the parasite species were native or invasive. Except for co-introduced monogeneans, species were less abundant and prevalent in the introduced host population than in the native one, which agrees well with the ERH. Two occupancy patterns were observed. A unimodal, right-skewed distribution of prevalence frequency was common for the acquired groups of helminth parasites in the introduced range, whereas a bimodal distribution was more common in the native range. Core species in the native range were monogeneans, adult and larval digeneans, whereas host-specific, co-introduced monogeneans were the only core species in the introduced range. Acquired grey-mullet specialists and host generalists infected only a small portion of the introduced host population with low mean abundance. These results indicate that strict host specificity, together with a direct life cycle, are the traits that enabled helminth species to entirely occupy the invasive host population. The AORs showed that parasite individuals tend to accumulate in a relatively small fraction of susceptible introduced hosts, probably as an adaptation to enhance mating opportunities, thereby providing a mechanistic explanation of the ERH. All this evidence suggests that co-introduced and acquired species use the introduced host population in very different ways. Therefore, we posit that the examination of AORs can be instrumental in understanding the role of co-introduced parasites in invasion theory.  相似文献   

3.
Biological invasions are ecologically and economically costly. Understanding the major mechanisms that contribute to an alien species becoming invasive is seen as essential for limiting the effects of invasive alien species. However, there are a number of fundamental questions that need addressing such as why some communities are more vulnerable to invasion than others and, indeed, why some alien species become widespread and abundant. The enemy release hypothesis (ERH) is widely evoked to explain the establishment and proliferation of an alien species. ERH predicts that an alien species introduced to a new region should experience a decrease in regulation by natural enemies which will lead to an increase in the distribution and abundance of the alien species. At the centre of this theory is the assumption that natural enemies are important regulators of populations. Additionally, the theory implies that such natural enemies have a stronger regulatory effect on native species than they do on alien species in the introduced range, and this disparity in enemy regulation results in increased population growth of the alien species. However, empirical evidence for the role of the ERH in invasion success is lacking, particularly for invertebrates. Many studies equate a reduction in the number of natural enemies associated with an alien species to release without studying population effects. Further insight is required in relation to the effects of specific natural enemies on alien and native species (particularly their ability to regulate populations). We review the role of ecological models in exploring ERH. We suggest that recent developments in molecular technologies offer considerable promise for investigating ERH in a community context.  相似文献   

4.
Successful establishment and spread of biological invaders may be promoted by the absence of population-regulating enemies such as pathogens, parasites or predators. This may come about when introduced taxa are missing enemies from their native habitats, or through immunity to enemies within invaded habitats. Here we provide field evidence that trematode parasites are absent in a highly invasive morph of the gastropod Melanoides tuberculata in Lake Malawi, and that the invasive morph is resistant to indigenous trematodes that castrate and induce gigantism in native M. tuberculata. Since helminth infections can strongly influence host population abundances in other host-parasite systems, this enemy release may have provided an advantage to the invasive morph in terms of reproductive capacity and survivorship.  相似文献   

5.
Norway maple (Acer platanoides) is a Eurasian introduced tree species which has invaded the North American range of its native congener, sugar maple (A. saccharum). One hypothesis used to explain the success of an invasive species is the enemy release hypothesis (ERH), which states that invasive species are often particularly successful in their new range because they lack the enemies of their native range. In this study, we hypothesized that Norway maple would have less insect damage than sugar maple due to such enemy release. Autumn 2005 and summer 2006 leaves of Norway and sugar maple were collected from six sites in New Jersey and Pennsylvania to compare percent leaf area loss, gall damage, fungal damage, and specific leaf area (cm2/g). Although both species had low overall mean levels of leaf damage (0.4–2.5%), in both years/seasons Norway maple had significantly less leaf damage than sugar maple. Insects were also collected to compare insect assemblies present on each tree species. The numbers of insect taxa and individuals found on each species were nearly equivalent. Overall, the results of this study are consistent with the enemy release hypothesis for Norway maple. In addition, sugar maples when surrounded by Norway maples tended to show reduced herbivory. This suggests that the spread of Norway maple in North America, by reducing amounts of insect herbivory, may have further ecosystem-wide impacts.  相似文献   

6.
The species pool hypothesis is applied here to the interpretation of ‘hump-shaped’ (unimodal) species richness patterns along gradients of both habitat fertility and disturbance level (the habitat templet). A ‘left-wall’ effect analogous to that proposed for the evolution of organismal complexity predicts a right-skewed unimodal distribution of historical habitat commonness on both gradients. According to the species pool hypothesis, therefore, the distribution of opportunity for net species accumulation (speciation minus extinction) should also have a corresponding unimodal central tendency on both habitat gradients. Two assumptions of this hypothesis are illustrated with particular reference to highly fertile, relatively undisturbed habitats: (i) such habitats have been relatively uncommon in space and time, thus providing relatively little historical opportunity for the origination of species with the traits necessary for effective competitive ability under these habitat conditions; and (ii) species that have evolved adaptation to these habitats are relatively large, thus imposing fundamental ‘packing’ limitations on the number of species that can ‘fit’ within such habitats. Based on these assumptions, the species pool hypothesis defines two associated predictions that are both supported by available data: (a) resident species richness will be relatively low in highly fertile, relatively undisturbed contemporary habitats; and (b) species sizes within regional floras should display as a right-skewed unimodal (log-normal) distribution. The latter is supported here by an analysis of data for 2,715 species in the vascular flora of northeastern North America.  相似文献   

7.
Vilà M  Maron JL  Marco L 《Oecologia》2005,142(3):474-479
The enemy release hypothesis (ERH), which has been the theoretical basis for classic biological control, predicts that the success of invaders in the introduced range is due to their release from co-evolved natural enemies (i.e. herbivores, pathogens and predators) left behind in the native range. We tested this prediction by comparing herbivore pressure on native European and introduced North American populations of Hypericum perforatum (St Johns Wort). We found that introduced populations occur at larger densities, are less damaged by insect herbivory and suffer less mortality than populations in the native range. However, overall population size was not significantly different between ranges. Moreover, on average plants were significantly smaller in the introduced range than in the native range. Our survey supports the contention that plants from the introduced range experience less herbivore damage than plants from the native range. While this may lead to denser populations, it does not result in larger plant size in the introduced versus native range as postulated by the ERH.  相似文献   

8.
Thirteen species of helminth parasites were recovered from six species of charadriid shorebirds (Aves: Charadriiformes) from Belize: the ruddy turnstone, Arenaria interpres, the snowy plover, Charadrius alexandrinus, the semipalmated plover, C. semipalmatus, the killdeer, C. vociferus, the white-rumped sandpiper, Calidris fuscicollis, and the black-bellied plover, Pluvialis squatarola. Cestode species were predominant (N = 8), followed by trematode species (N = 3) and acanthocephala (N = 2). The trematode, Paramaritremopsis solielangi infected four of the six species of hosts. The cestodes, Nadejdolepis litoralis and N. paranitidulans infected three and two host species respectively. Helminth parasite species were contagious (clumped) and not evenly distributed among hosts. Twelve of the 13 species were generalists. The one specialist Microphallus kinsellae was recovered from one C. fuscicollis. Three of the four types of feeding guilds were present and in approximately the same number. All but M. kinsellae have been reported from other species of hosts, mostly from Eurasia and North America.  相似文献   

9.
Cirsium arvense (L.) Scop. (Californian, Canada, or creeping thistle) is an exotic perennial herb indigenous to Eurasia that successfully established in New Zealand (NZ) approximately 130 years ago. Presently, C. arvense is considered one of the worst invasive weeds in NZ arable and pastoral productions systems. A mechanism commonly invoked to explain the apparent increased vigour of introduced weeds is release from natural enemies. The enemy-release hypothesis (ERH) predicts that plants in an introduced range should experience reduced herbivory, particularly from specialists, and that release from this natural enemy pressure facilitates increased plant performance in the introduced range. In 2007, surveys were carried out in 13 populations in NZ (7 in the North Island and 6 in the South Island) and in 12 populations in central Europe to quantify and compare growth characteristics of C. arvense in its native versus introduced range. Altitude and mean annual precipitation for each population were used as covariates in an attempt to explain differences or similarities in plant traits among ranges. All plant traits varied significantly among populations within a range. Shoot dry weight was greater in the South Island compared to Europe, which is in line with the prediction of increased plant performance in the introduced range; however, this was explained by environmental conditions. Contrary to expectations, the North Island was not different from Europe for all plant traits measured, and after adjustment for covariates showed decreased shoot density and dry weight compared to the native range. Therefore, environmental factors appear to be more favourable for growth of C. arvense in both the North and South Islands. In accordance with the ERH, there was significantly greater endophagous herbivory in the capitula and stems of shoots in Europe compared to both NZ ranges. In NZ, capitulum attack from Rhinocyllus conicus was found only in the North Island, and no stem-mining attack was found anywhere in NZ. Thus, although C. arvense experiences significantly reduced natural enemy pressure in both the North and South Islands of NZ there is no evidence that it benefits from this enemy release.  相似文献   

10.
Aim  The present-day geographical distribution of parasites with a direct biological life cycle is guided mostly by the past dispersal and vicariance events that have affected their hosts. The Amphibia– Polystoma association (which satisfies these criteria) also exhibits original traits, such as host specificity and world-wide distribution. This biological model was thus chosen to investigate the common historical biogeography of its widespread representatives.
Location  North and South America, Eurasia and Africa.
Methods  We investigated the phylogeny of 12 species of neobatrachian parasites sampled from North and South America, Eurasia and Africa. Hosts belonged mostly to hyloids and ranoids of families Bufonidae, Hylidae, Leptodactylidae, Ranidae and Hyperoliidae. Phylogenetic reconstructions were inferred from maximum likelihood and maximum parsimony analyses from complete ITS1 sequences.
Results  The group of American species appeared paraphyletic with one species at the base of a Eurafrican clade, within which two lineages were seen: one composed of only Eurasian species, and the other of European and African species, with the two European species basal to an African clade.
Main conclusions  The route of Polystoma evolution is deduced from the phylogenetic tree and discussed in the light of host evolution. We conclude that Polystoma originated in South America on hyloids, after the separation of South America from Africa. The genus must have colonized North America in Palaeocene times and Eurasia by the mid-Cainozoic, taking advantage of the dispersal of either ancestral bufonids or hylids. Africa, however, appears to have been colonized more recently, during the Messinian period.  相似文献   

11.
The success of introduced species is often facilitated by escape from the effects of natural predators and parasites. Introduced species can profit from this favourable situation, attaining higher population densities and greater individual sizes in novel areas. In this study, somatic condition and parasite infection were compared between native and non-native populations of Neogobius kessleri Günther; introduced only within the interconnected Danube and Rhine River system, and N. melanostomus (Pallas); widely introduced throughout several river systems in Europe and North America. Higher values of Fulton’s condition factor were observed in non-native populations of both goby species. Neogobius melanostomus attained higher gonadosomatic index values in non-native populations, indicating potential increased investment in reproduction in its new area. A lower splenosomatic index was observed in non-native populations, especially in N. melanostomus. Parasite infracommunity richness and mean abundance were higher in N. kessleri in both native and non-native populations, suggesting higher susceptibility of N. kessleri to these parasites. Non-native populations of both hosts showed higher infra-community richness as a result of acquiring parasites native to the new area, but lower parasite abundance. Differences in success of the introduction and establishment in new areas between the two fish species may be associated with a relatively low parasite infection rate and a higher gonadosomatic index in non-native populations of N. melanostomus in comparison to N. kessleri.  相似文献   

12.
Ecosystems may suffer from the impact of invasive species. Thus, understanding the mechanisms contributing to successful invasions is fundamental for limiting the effects of invasive species. Most intuitive, the enemy release hypothesis predicts that invasive species might be more successful in the exotic range than resident sympatric species owing to the absence of coevolution with native enemies. Here, we test the enemy release hypothesis for the invasion of Europe by the North American spider Mermessus trilobatus. We compare the susceptibility of invasive Mermessus trilobatus and a native species with similar life history to a shared predator with which both species commonly co‐occur in Europe. Contrary to our expectations, invasive Mermessus trilobatus were consumed three times more frequently by native predators than their native counterparts. Our study shows that invasive Mermessus trilobatus is more sensitive to a dominant native predator than local sympatric species. This suggests that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release. Further studies investigating evolutionary and ecological processes behind the invasion success of Mermessus trilobatus, including testing natural parasites and rapid reproduction, are needed to explain its invasion success in Europe.  相似文献   

13.
Three species of brood parasites are increasingly being recorded as transoceanic vagrants in the Northern Hemisphere, including two Cuculus cuckoos from Asia to North America and a Molothrus cowbird from North America to Eurasia. Vagrancy patterns suggest that their establishment on new continents is feasible, possibly as a consequence of recent range increases in response to a warming climate. The impacts of invasive brood parasites are predicted to differ between continents because many host species of cowbirds in North America lack egg rejection defenses against native and presumably also against invasive parasites, whereas many hosts of Eurasian cuckoos frequently reject non‐mimetic, and even some mimetic, parasitic eggs from their nests. During the 2014 breeding season, we tested the responses of native egg‐rejecter songbirds to model eggs matching in size and color the eggs of two potentially invasive brood parasites. American Robins (Turdus migratorius) are among the few rejecters of the eggs of Brown‐headed Cowbirds (M. ater), sympatric brood parasites. In our experiments, robins rejected one type of model eggs of a Common Cuckoo (C. canorus) host‐race, but accepted model eggs of a second cuckoo host‐race as well as robin‐mimetic control eggs. Common Redstarts (Phoenicurus phoenicurus), frequent hosts of Common Cuckoos in Eurasia, rejected ~50% of model Brown‐headed Cowbird eggs and accepted most redstart‐mimetic control eggs. Our results suggest that even though some hosts have evolved egg‐rejection defenses against native brood parasites, the invasion of brood parasites into new continents may negatively impact both naïve accepter and coevolved rejecter songbirds in the Northern Hemisphere.  相似文献   

14.
This study provides a comprehensive checklist of parasites reported for native and non-native populations of seven Ponto-Caspian goby species, i.e. Babka gymnotrachelus, Neogobius fluviatilis, N. melanostomus, Ponticola gorlap, P. kessleri, Proterorhinus semilunaris and P. semipellucidus, all of which have recently expanded their natural range, either by transoceanic translocation or along the three main European intracontinental invasion corridors. In some cases, invasion success is facilitated by loss of natural enemies, such as predators and parasites; thus, knowledge of a species natural parasite fauna is essential for assessments of enemy release in the host's non-native range. The study is based on published literature and personal unpublished data related to parasites of Ponto-Caspian gobiids. A total of 249 parasite taxa have been reported during 1931—2019, with higher numbers reported from native (214) than non-native (151) ranges. This checklist indicates apparent reduction in native parasites in non-native ranges in all goby species, although parasite colonisation in non-native ranges differs between fish species and invasion corridors. Interestingly, the cumulative number of species reported is still gradually increasing in both ranges. Acquisition of high number of local parasite species also indicates competence of Ponto-Caspian gobies to a wide range of generalist parasites.  相似文献   

15.
When do localized natural enemies increase species richness?   总被引:1,自引:0,他引:1  
The Janzen–Connell hypothesis states that local species‐specific density dependence, mediated through specialist enemies of offspring such as fungal pathogens and insect seed predators, can facilitate coexistence of species by preventing recruitment near conspecific adults. We use spatially explicit simulation models and analytical approximations to evaluate how spatial scales of offspring and enemy dispersal affect species richness. In comparison with model communities in which both offspring and enemies disperse long distances, species richness is substantially decreased when offspring disperse long distances and enemies disperse short distances. In contrast, when both offspring and enemies disperse short distances species richness more than doubles and adults of each species are highly spatially clumped. For the range of conditions typical of tropical forests, locally dispersing specialist enemies may decrease species richness relative to enemies that disperse long distances. In communities where dispersal distances of both offspring and enemies are short, local effects may enhance species richness.  相似文献   

16.
Heikki Pöykkö 《Oikos》2011,120(4):564-569
According to the enemy‐free space hypothesis (EFS), parasites and predators create a selective force for a specialization on a host that assures better protection against natural enemies than other potential hosts. Few studies have found support for EFS and none of them have covered the whole larval period in natural conditions. I studied the growth and survival of lichen‐feeding moth larvae on five lichen species with and without their natural enemies in natural conditions covering the whole larval period. All the three following EFS predictions gained support. First, natural enemies caused significant mortality of larvae. Second, when natural enemies were present, larval survival was highest on preferred Ramalina lichens. Third, larvae attained higher mass on non‐preferred Parmelia sulcata than on Ramalina species, indicating fecundity cost to feed on Ramalina species instead of P. sulcata. EFS for C. lichenaria larvae on Ramalina species is likely a consequence of shrubby appearance of Ramalina species which provide better larval protection from predation than other hosts.  相似文献   

17.
QIAN  HONG 《Annals of botany》1999,83(3):271-283
This paper reports: (1) patterns of taxonomic richness of vascularplants in North America (north of Mexico), an area accountingfor 16.6% of the total world land, in relation to latitudinaland longitudinal gradients; (2) floristic relationships betweendifferent latitudinal zones, longitudinal zones, and geographicregions of North America; and (3) floristic relationships betweenNorth America and Eurasia at various geographic scales. NorthAmerica was geographically divided into twelve regions, whichwere latitudinally grouped into four zones, each with threeregions, and longitudinally grouped into three zones, each withfour regions. The native vascular flora of North America consistsof 162 orders, 280 families, 1904 genera and 15352 species.Along the latitudinal gradient, species richness shows a strikingincrease with decreasing latitude (e.g. the northernmost latitudinalzone has only 11.7% of the number of species in the southernmostlatitudinal zone). However, about 63% of the species of thenorthernmost latitudinal zone are also present in the southernmostlatitudinal zone of North America. Among the three longitudinalzones, the zone on the Pacific coast has 1.48 and 1.64-timesas many species as the zones in the interior and on the Atlanticcoast, respectively. About 36% of the species in the zone ofthe Atlantic coast also occur in the Pacific coast zone. However,each of over 40% of the species in North America occupies lessthan 10% of the total land area of North America. Some 48% ofthe genera and 6.5% of the species of North America are alsonative to Eurasia. In general, the number of genera common toNorth America and Eurasia increased from the north to the southand from the west to the east of North America, whereas thenumber of species common to the two continents decreased alongthe same two geographic gradients.Copyright 1999 Annals of BotanyCompany Asia, biodiversity, Europe, floristic similarity, latitudinal and longitudinal gradients, North America, taxonomic richness.  相似文献   

18.
Less than 50% of Australian amphibians have been recorded as hosts for helminth parasites. Despite developments in parasite community ecology in amphibians elsewhere, Australia lags behind with only two publications on this subject. Reasons advanced for this are that much of the collecting and taxonomic studies were conducted earlier this century before more recent discoveries of host genera and species as well as species complexes in the amphibian fauna. Consequently, there is a need for re-collection of hosts and parasites, and taxonomic revision of the parasites. In addition, as shown in this study, the parasite fauna in Australian amphibians is depauperate. Composition of the parasite fauna was largely dependent on the ecological associations of the host animal species. Frogs were infected with few helminth species and these occurred at low intensity, indicating, as in Europe and North America, that a depauperate fauna is also characteristic of amphibians in tropical regions.  相似文献   

19.
Release from natural enemies is considered to potentially play an important role in the initial establishment and success of introduced plants. With time, the species richness of herbivores using non-native plants may increase [species-time relationship (STR)]. We investigated whether enemy release may be limited to the early stages of invasion. Substituting space for time, we sampled invertebrates and measured leaf damage on the invasive species Senecio madagascariensis Poir. at multiple sites, north and south of the introduction site. Invertebrate communities were collected from plants in the field, and reared from collected plant tissue. We also sampled invertebrates and damage on the native congener Senecio pinnatifolius var. pinnatifolius A. Rich. This species served as a control to account for environmental factors that may vary along the latitudinal gradient and as a comparison for evaluating the enemy release hypothesis (ERH). In contrast to predictions of the ERH, greater damage and herbivore abundances and richness were found on the introduced species S. madagascariensis than on the native S. pinnatifolius. Supporting the STR, total invertebrates (including herbivores) decreased in abundance, richness and Shannon diversity from the point of introduction to the invasion fronts of S. madagascariensis. Leaf damage showed the opposite trend, with highest damage levels at the invasion fronts. Reared herbivore loads (as opposed to external collections) were greater on the invader at the point of introduction than on sites further from this region. These results suggest there is a complex relationship between the invader and invertebrate community response over time. S. madagascariensis may be undergoing rapid changes at its invasion fronts in response to environmental and herbivore pressure.  相似文献   

20.
Three trips were taken to central Mexico to search for natural enemies ofLeptinotarsa decemlineata (Say), in 1980, 1983, and 1985. 18 natural enemy species were found associated with 10 species ofLeptinotarsa. Asopine pentatomids dominate the collections, followed by tachnid parasites and hemipteran and coleopteran predators. Natural enemies may play a major role in regulating populations ofLeptinotarsa in Mexico. Their adaptability to northern climates is unclear.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号