共查询到20条相似文献,搜索用时 0 毫秒
1.
POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope 总被引:9,自引:10,他引:9
下载免费PDF全文

《The Journal of cell biology》1994,125(1):31-42
We have identified a concanavalin A-reactive glycoprotein of 150 kD that coenriches with isolated yeast nuclear pore complexes. Molecular cloning and sequencing of this protein revealed a single canonical transmembrane segment. Epitope tagging and localization by both immunofluorescence and immunoelectron microscopy confirmed that it is a pore membrane protein. The protein was termed POM152 (for pore membrane protein of 152 kD) on the basis of its location and cDNA-deduced molecular mass. POM152 is likely to be a type II membrane protein with its NH2-terminal region (175 residues) and its COOH-terminal region (1,142 residues) positioned on the pore side and cisternal side of the pore membrane, respectively. The proposed cisternally exposed domain contains eight repetitive motifs of approximately 24 residues. Surprisingly, POM152 deletion mutants were viable and their growth rate was indistinguishable from that of wild-type cells at temperatures between 17 and 37 degrees C. However, overproduction of POM152 inhibited cell growth. When expressed in mouse 3T3 cells, POM152 was found to be localized to the pore membrane, suggesting a conserved sorting pathway between yeast and mammals. 相似文献
2.
Primary sequence and heterologous expression of nuclear pore glycoprotein p62 总被引:8,自引:22,他引:8
下载免费PDF全文

The major nuclear pore protein p62 is modified by O-linked N-acetylglucosamine and functions in nuclear transport. We have cloned, sequenced, and expressed the full-length rat p62 cDNA. The rat p62 mRNA is 2,941 nucleotides long and encodes a protein of 525 amino acids containing 30% serine and threonine residues. The amino acid sequence near the amino-terminus contains unique tetrapeptide repeats while the carboxy-terminus consists of a series of predicted alpha-helical regions with hydrophobic heptad repeats. Heterologous expression of rat p62 in African Green Monkey Kidney COS-1 cells and CV-1 cells was detected using a species-specific antipeptide serum. When transiently expressed in COS-1 cells, rat p62 binds wheat germ agglutinin and concentrates at the spindle poles during mitosis. In CV-1 cells cotransfected with rat p62 cDNA and SV40 viral DNA, rat p62 associates with the nuclear membrane without interfering with the nuclear transport of SV40 large T antigen. The ability to express p62 in tissue culture cells will facilitate analysis of the role of this pore protein in nuclear transport. 相似文献
3.
Glycophorin, an integral membrane glycoprotein known to be a receptor for several lectins, has been spin labelled specifically on headgroup terminal sugars. The labelled derivative has been studied in solution and also in various model membranes in an attempt to determine the factors which control headgroup dynamics. Under conditions which mimic those in a living cell the oligosaccharide chains show a uniform, relatively high freedom of motion, with individual sugar correlation times on the order of 6 × 10?10 sec to 8 × 10?10 sec depending upon the extent of glycoprotein headgroup involvement with other glycocalyx components. They exhibit no detectable occupancy of lipid or protein hydrophobic domains. Oligosaccharide dynamics are insensitive to factors which act upon that portion of the polypeptide backbone which inserts into the membrane, however a specific recognition event markedly reduces terminal sugar mobility. 相似文献
4.
Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore 总被引:1,自引:0,他引:1
Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex. 相似文献
5.
An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region 总被引:10,自引:15,他引:10
下载免费PDF全文

《The Journal of cell biology》1993,122(3):513-521
We have identified an integral membrane protein of 145 kD (estimated by SDS-PAGE) of rat liver nuclear envelopes that binds to WGA. We obtained peptide sequence from purified p145 and cloned and sequenced several cDNA clones and one genomic clone. The relative molecular mass of p145 calculated from its complete, cDNA deduced primary structure is 120.7 kD. Antibodies raised against a synthetic peptide represented in p145 reacted monospecifically with p145. In indirect immunofluorescence these antibodies gave punctate staining of the nuclear envelope. Immunogold EM showed specific decoration of the nuclear pores. Thus p145 is an integral membrane protein located specifically in the "pore membrane" domain of the nuclear envelope. To indicate this specific location, and based on its calculated relative molecular mass, the protein is termed POM 121 (pore membrane protein of 121 kD). The 1,199- residue-long primary structure shows a hydrophobic region (residues 29- 72) that is likely to form one (or two adjacent) transmembrane segment(s). The bulk of the protein (residues 73-1199) is predicted to be exposed not on the cisternal side but on the pore side of the pore membrane. It contains 36 consensus sites for various kinases. However, its most striking feature is a repetitive pentapeptide motif XFXFG that has also been shown to occur in several nucleoporins. This nucleoporin- like domain of POM 121 is proposed to function in anchoring components of the nuclear pore complex to the pore membrane. 相似文献
6.
The metazoan nuclear envelope (NE) breaks down and reforms at each mitosis. Nuclear pore complexes (NPCs), which allow nucleocytoplasmic transport during interphase, assemble into the reforming NE at the end of mitosis. Using in vitro NE assembly assays, we show that one of the two transmembrane nucleoporins, pom121, is essential for NE formation, whereas the second, gp210, is dispensable. Depletion of either pom121-containing membrane vesicles or the protein alone does not affect vesicle binding to chromatin but prevents their fusion to form a closed NE. When the Nup107-160 complex, which is essential for integration of NPCs into the NE, is also depleted, pom121 becomes dispensable for NE formation, suggesting a close functional link between NPC and NE formation and the existence of a checkpoint that monitors NPC assembly state. 相似文献
7.
The yeast integral membrane protein Apq12 potentially links membrane dynamics to assembly of nuclear pore complexes 总被引:3,自引:0,他引:3
下载免费PDF全文

Although the structure and function of components of the nuclear pore complex (NPC) have been the focus of many studies, relatively little is known about NPC biogenesis. In this study, we report that Apq12 is required for efficient NPC biogenesis in Saccharomyces cerevisiae. Apq12 is an integral membrane protein of the nuclear envelope (NE) and endoplasmic reticulum. Cells lacking Apq12 are cold sensitive for growth, and a subset of their nucleoporins (Nups), those that are primarily components of the cytoplasmic fibrils of the NPC, mislocalize to the cytoplasm. APQ12 deletion also causes defects in NE morphology. In the absence of Apq12, most NPCs appear to be associated with the inner but not the outer nuclear membrane. Low levels of benzyl alcohol, which increases membrane fluidity, prevented Nup mislocalization and restored the proper localization of Nups that had accumulated in cytoplasmic foci upon a shift to lower temperature. Thus, Apq12p connects nuclear pore biogenesis to the dynamics of the NE. 相似文献
8.
We have developed an 125I-labeled F-actin blot overlay assay for the identification of F-actin-binding proteins after transfer to nitrocellulose from SDS-polyacrylamide gels. Two major F-actin-binding proteins from Dictyostelium discoideum, a cytoplasmic 30 kDa protein and a 17 kDa integral membrane protein, and two minor membrane polypeptides of 19 kDa and 15 kDa were detected by this method. Using F-actin affinity and immunoaffinity chromatography, the 17 kDa polypeptide was identified as ponticulin, a previously described actin-binding glycoprotein from D. discoideum plasma membranes (Wuestehube, L.J., and Luna, E.J., [1987]: J. Cell Biol. 105:1741-1751). The binding of F-actin to ponticulin on blots is specific because unlabeled F-actin competes with 125I-labeled F-actin and because G-actin does not bind. Nitrocellulose-bound ponticulin displays binding characteristics similar to those of purified plasma membranes in solution, e.g., F-actin binding is sensitive to high salt and to elevated temperatures. Under optimal conditions, 125-I-labeled F-actin blot overlays are at least as sensitive as are immunoblots with an antibody specific for ponticulin. When blotted onto nitrocellulose after 2-D gel electrophoresis, all isoforms of ponticulin and of the 19 kDa and 15 kDa polypeptides appear to bind F-actin in proportion to their abundance. Thus the actin-binding activies of these proteins do not appear to be regulated by modifications that affect isoelectric point. However, the actin-binding activity of nitrocellulose-bound ponticulin is diminished when the protein is exposed to reducing agents, suggesting an involvement of disulfide bond(s) in ponticulin function. The 125I-labeled F-actin blot overlay assay also may enable us to identify F-actin-binding proteins in other cell types and should provide a convenient method for monitoring the purification of these proteins. 相似文献
9.
The nuclear pore complex (NPC) is the only known gateway for nucleocytoplasmic traffic. The nuclear pore membrane glycoprotein 210 (POM210/gp210) is considered to be important for the assembly and structure of pore complexes in metazoan cells. However, here we demonstrate cell-type specific expression of the gp210 protein during mouse organogenesis. As shown previously for its mRNA, distinct expression of the gp210 was seen in developing epithelia and some other cell types, whereas it was undetectable in nuclei of several other embryonic tissue compartments. In sharp contrast, monoclonal antibody 414 recognizing four non-membrane nucleoporins, stained the nuclear envelope of all cell types. In four cultured mouse cell lines, gp210 mRNA and protein were below detection levels, in contrast to some other nucleoporins tested. Distinct expression of gp210 mRNA and protein was seen in cultured mouse embryonic stem (ES) cells. These findings support the view of cell-type specific NPCs in metazoans and that the gp210 gene is regulated by cell-type specific control elements not shared by other nucleoporins. Although it cannot be excluded that very low expression levels of gp210 are sufficient to allow attachment of NPCs, a more likely alternative is that it has cell-type specific functions. 相似文献
10.
Architecture of a coat for the nuclear pore membrane 总被引:1,自引:0,他引:1
The symmetric core of the nuclear pore complex can be considered schematically as a series of concentric cylinders. A peripheral cylinder coating the pore membrane contains the previously characterized, elongated heptamer that harbors Sec13-Nup145C in its middle section. Strikingly, Sec13-Nup145C crystallizes as a hetero-octamer in two space groups. Oligomerization of Sec13-Nup145C was confirmed biochemically. Importantly, the numerous interacting surfaces in the hetero-octamer are evolutionarily highly conserved, further underlining the physiological relevance of the oligomerization. The hetero-octamer forms a slightly curved, yet rigid rod of sufficient length to span the entire height of the proposed membrane-adjacent cylinder. In concordance with the dimensions and symmetry of the nuclear pore complex core, we suggest that the cylinder is constructed of four antiparallel rings, each ring being composed of eight heptamers arranged in a head-to-tail fashion. Our model proposes that the hetero-octamer would vertically traverse and connect the four stacked rings. 相似文献
11.
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment. 相似文献
12.
The PC-1 protein is a membrane glycoprotein that is selectively expressed on the surface of antibody-secreting cells. Previous work has shown that it consists of two apparently identical disulfide-bonded polypeptides, each of molecular weight approximately 120,000. We now describe the sequence of PC-1 mRNA and protein. The PC-1 protein is shown to consist of 905 amino acids and to have an uncommon transmembrane orientation. The NH2-terminal 58 residues are intracellular and the COOH-terminal 826 residues are extracellular. A cysteine-rich region of 85 amino acids lies adjacent to the extracellular surface of the membrane and appears to have arisen by exon duplication. In common with other membrane glycoproteins with this orientation, there is no obvious signal sequence other than the transmembrane segment. The PC-1 protein therefore has an overall structure and membrane orientation that resembles those of the transferrin receptor, the asialoglycoprotein receptor, and the Ia invariant chain. 相似文献
13.
Proteomic analysis of the mammalian nuclear pore complex 总被引:35,自引:0,他引:35
Cronshaw JM Krutchinsky AN Zhang W Chait BT Matunis MJ 《The Journal of cell biology》2002,158(5):915-927
As the sole site of nucleocytoplasmic transport, the nuclear pore complex (NPC) has a vital cellular role. Nonetheless, much remains to be learned about many fundamental aspects of NPC function. To further understand the structure and function of the mammalian NPC, we have completed a proteomic analysis to identify and classify all of its protein components. We used mass spectrometry to identify all proteins present in a biochemically purified NPC fraction. Based on previous characterization, sequence homology, and subcellular localization, 29 of these proteins were classified as nucleoporins, and a further 18 were classified as NPC-associated proteins. Among the 29 nucleoporins were six previously undiscovered nucleoporins and a novel family of WD repeat nucleoporins. One of these WD repeat nucleoporins is ALADIN, the gene mutated in triple-A (or Allgrove) syndrome. Our analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function. 相似文献
14.
Fernández C Hilty C Wider G Güntert P Wüthrich K 《Journal of molecular biology》2004,336(5):1211-1221
The structure of the integral membrane protein OmpX from Escherichia coli reconstituted in 60 kDa DHPC micelles (OmpX/DHPC) was calculated from 526 NOE upper limit distance constraints. The structure determination was based on complete sequence-specific assignments for the amide protons and the Val, Leu, and Ile(delta1) methyl groups in OmpX, which were selectively protonated on a perdeuterated background. The solution structure of OmpX in the DHPC micelles consists of a well-defined, eight-stranded antiparallel beta-barrel, with successive pairs of beta-strands connected by mobile loops. Several long-range NOEs observed outside of the transmembrane barrel characterize an extension of a four-stranded beta-sheet beyond the height of the barrel. This protruding beta-sheet is believed to be involved in intermolecular interactions responsible for the biological functions of OmpX. The present approach for de novo structure determination should be quite widely applicable to membrane proteins reconstituted in mixed micelles with overall molecular masses up to about 100 kDa, and may also provide a platform for additional functional studies. 相似文献
15.
Three-dimensional crystals of an integral membrane protein: an initial x-ray analysis 总被引:19,自引:1,他引:19
下载免费PDF全文

Matrix protein, a pore-forming transmembrane protein spanning the outer membrane of Escherichia coli, has been obtained in a variety of three- dimensional crystal forms amenable to both electron microscope and x- ray analyses. Successful association into large crystals depended on the use of alpha-octyl glucoside, a detergent with relatively low affinity for the protein. Electron micrographs of thin-sectioned crystals show a high degree of order. Preliminary crystallographic data suggest that the crystals, which exhibit diffraction to 3.8 A, have a cubic space group. 相似文献
16.
M D'Onofrio M D Lee C M Starr M Miller J A Hanover 《The Journal of biological chemistry》1991,266(18):11980-11985
17.
The role of the integral membrane nucleoporins Ndc1p and Pom152p in nuclear pore complex assembly and function
下载免费PDF全文

The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus. 相似文献
18.
An integral glycoprotein associated with the membrane attachment sites of actin microfilaments 总被引:3,自引:5,他引:3
下载免费PDF全文

An integral membrane protein associated with sites of microfilament-membrane attachment has been identified by a newly developed IgG1 monoclonal antibody. This antibody, MAb 30B6, was derived from hybridoma fusion experiments using intact mitotic cells of chick embryo fibroblasts as the immunization vehicle as well as the screening probe for cell surface antigens. In immunofluorescent experiments with fixed cells, MAb 30B6 surface labeling is uniquely correlated with microfilament distributions in the cleavage furrow region of dividing chick embryo fibroblasts and cardiac myocytes in culture. The MAb 30B6 antigen in addition is associated with microfilament-membrane attachment sites in interphase fibroblasts at the dorsal surface, the adhesion plaque region at the ventral surface, and at junction-like regions of cell-cell contact. It is also found co-localized with the membrane-dense plaques of smooth muscle. The MAb 30B6 antigen is expressed in a wide number of chicken cell types (particularly smooth muscle cells, platelets, and endothelial cells), but not in erythrocytes. Some of the molecular characteristics of the MAb 30B6 antigen have been determined from immunoblotting, immunoaffinity chromatography, immunoprecipitation, cell extraction, and charge shift electrophoresis experiments. It is an integral sialoglycoprotein with an apparent molecular mass of 130 kD (reduced form)/107 kD (nonreduced form) in SDS PAGE. Another prominent glycoprotein species with an apparent molecular mass of 175 kD (reduced form)/165 kD (nonreduced form) in SDS PAGE is co-isolated on MAb 30B6 affinity columns, but appears to be antigenically distinct since it is not recognized by MAb 30B6 in immunoblotting or immunoprecipitation experiments. By virtue of its surface distributions relative to actin microfilaments and its integral protein character, we propose that the MAb 30B6 antigen is an excellent candidate for the function of directly or indirectly anchoring microfilaments to the membrane. 相似文献
19.
Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly
下载免费PDF全文

Harel A Chan RC Lachish-Zalait A Zimmerman E Elbaum M Forbes DJ 《Molecular biology of the cell》2003,14(11):4387-4396
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly. 相似文献
20.
Bacterial phospholipase A: structure and function of an integral membrane phospholipase 总被引:9,自引:0,他引:9
Within the large family of lipolytic enzymes, phospholipases constitute a very diverse subgroup with physiological functions such as digestion and signal transduction. Most phospholipases may associate with membranes at the lipid-water interface. However, in many Gram-negative bacteria, a phospholipase is present which is located integrally in the bacterial outer membrane. This phospholipase (outer membrane phospholipase A or OMPLA) is involved in transport across the bacterial outer membrane and has been implicated in bacterial virulence. OMPLA is calcium dependent and its activity is strictly regulated by reversible dimerisation. Recently the crystal structure of this integral membrane enzyme has been elucidated. In this review, we summarise the implications of these structural data for the understanding of the function and regulation of OMPLA, and discuss a mechanism for phospholipase dependent colicin release in Escherichia coli. 相似文献