首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissimilatory nitrate reduction is catalyzed by a membrane-bound and a periplasmic nitrate reductase. We set up a real-time PCR assay to quantify these two enzymes, using the narG and napA genes, encoding the catalytic subunits of the two types of nitrate reductases, as molecular markers. The narG and napA gene copy numbers in DNA extracted from 18 different environments showed high variations, with most numbers ranging from 2 x 10(2) to 6.8 x 10(4) copies per ng of DNA. This study provides evidence that, in soil samples, the number of proteobacteria carrying the napA gene is often as high as that of proteobacteria carrying the narG gene. The high correlation observed between narG and napA gene copy numbers in soils suggests that the ecological roles of the corresponding enzymes might be linked.  相似文献   

2.
Boreal soils have been suspected reservoirs of infectious environmental mycobacteria. Detection of these bacteria in the environment is hampered by their slow growth. We applied a quantitative sandwich hybridization approach for direct detection of mycobacterial 16S rRNA in soil without a nucleic acid amplification step. The numbers of mycobacterial 16S rRNA molecules found in the soil indicated the presence of up to 10(7) to 10(8) mycobacterial cells per gram of soil. These numbers exceed by factor of 10 to 100 x the previous estimates of mycobacteria in soil based on culture methods. When real-time PCR with mycobacteria targeting primers was used to estimate the number of 16S rDNA copies in soil, one copy of 16S rDNA was detected per 10(4) copies of 16S rRNA. This is close to the number of 16S rRNA molecules detected per cell by the same method in laboratory pure cultures of M. chlorophenolicum. Therefore a major part of the mycobacterial DNA in the studied soils may thus have represented metabolically active cells. The 16S rRNA sandwich hybridization method described in this paper offers a culture independent solution for tracking environmental reservoirs of viable and potentially infectious mycobacteria.  相似文献   

3.
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 x 10(5) to 8.9 x 10(5) copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 x 10(3) to 2.6 x 10(4), 7.4 x 10(2) to 1.4 x 10(3), 2.5 x 10(2) to 6.4 x 10(3), and 1.2 x 10(3) to 5.5 x 10(3), respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.  相似文献   

4.
Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.  相似文献   

5.
The arsC gene is responsible for the first step in arsenate biotransformation encoding the enzyme arsenate reductase. The quantitative real-time PCR method was developed to quantify the abundance of the arsC genes in environmental samples contaminated with arsenic. Two sets of primers that showed high specificity for the target arsC gene were designed based on consensus sequences from 13 bacterial species. The arsC gene was used as an external standard instead of total DNA in the calibration curve for real-time PCR, which was linear over six orders of magnitude and the detection limit was estimated to be about three copies of the gene. Soil samples from arsenic contaminated sites were screened for arsC genes by using PCR and showed the presence of this gene. The copy numbers of the gene ranging from 0.88 x 10(4) to 1.56 x 10(5) per ng total DNA were found in eight arsenic contaminated samples. Soil samples from a bioreactor containing pulp mill biomass and high concentration of arsenate showed a tenfold higher count of arsC gene copies than soil samples collected underground from an arsenic-rich gold mine.  相似文献   

6.
Denitrification, the reduction of nitrate to nitrous oxide or dinitrogen, is the major biological mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Microorganisms capable of denitrification are widely distributed in the environment but little is known about their abundance since quantification is performed using fastidious and time-consuming MPN-based approaches. We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirK), a key enzyme of the denitrifying pathway catalyzing the reduction of soluble nitrogen oxide to gaseous form. The real-time PCR assay was linear over 7 orders of magnitude and sensitive down to 10(2) copies by assay. Real-time PCR analysis of different soil samples showed nirK densities of 9.7x10(4) to 3.9x10(6) copies per gram of soil. Soil real-time PCR products were cloned and sequenced. Analysis of 56 clone sequences revealed that all cloned real-time PCR products exhibited high similarities to previously described nirK. However, phylogenetic analysis showed that most of environmental sequences are not related to nirK from cultivated denitrifiers.  相似文献   

7.
We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-microl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 +/- 0.7) x 10(3) to (2.9 +/- 0.3) x 10(5) copies of nagAc-like dioxygenase genes per microg of DNA extracted from sediment samples. These values corresponded to (1.2 +/- 0.6) x 10(5) to (5.4 +/- 0.4) x 10(7) copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene.  相似文献   

8.
Many bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) contain the nahAc gene that encodes a component of multimeric naphthalene dioxygenases. Because the nahAc gene is highly conserved, this gene serves as a potential biomarker for PAH degradation activity. The aim of this research was to examine the relationship between the rate of naphthalene degradation and the copy number of the nahAc gene in soils using conventional and real-time PCR. Four sets of degenerate primers for real-time PCR were designed based on the nahAc DNA sequences of 33 bacterial species. Before addition of naphthalene, copy numbers of the nahAc gene were below the detection limits of the assay at 5×103 copy numbers per gram of soil, but increased by over a thousand fold to 107 copies after 6 days of exposure to naphthalene vapors (approximately 30 ppm soil water concentration). Two unreported naphthalene dioxygenase homologs were found in the naphthalene-spiked soil by cloning and sequencing of the PCR products from the nahAc primers. Results of these experiments demonstrate the highly dynamic changes that occur in soil microbial communities after exposure to naphthalene and suggest that there is a direct relationship between gene copy numbers and degradation rates for naphthalene in PAH-contaminated soils.  相似文献   

9.
Real-time quantitative PCR (RTQ-PCR) was used to quantify the bacterial target DNA extracted by three commonly used DNA extraction protocols (bead mill homogenization, grinding in presence of liquid nitrogen and hot detergent SDS based enzymatic lysis). For the purpose of our study, pure culture of Bacillus cereus (model organism), sterilized soil seeded with a known amount of B. cereus (model soil system) and samples from woodland and grassland (environmental samples) were chosen to extract DNA by three different protocols. The extracted DNA was then quantified by RTQ-PCR using 16S rDNA specific universal bacterial primers. The standard curve used for the quantification by RTQ-PCR was linear and revealed a strong linear relationship (r(2)=0.9968) with a higher amplification efficiency, e5=1.02. High resolution gel electrophoresis was also carried out to observe the effect of these extraction methods on diversity analysis. For the model soil system, the liquid nitrogen method showed the highest target DNA copy number (1.3 x 10(9) copies/microl). However, for both the environmental samples, the bead beating method was found to be suitable on the basis of the high target DNA copy numbers (5.38 x 10(9) and 4.01 x 10(8) copies/ml for woodland and grassland respectively), high yield (6.4 microg/g and 1.76 microg/g of soil for woodland and grassland respectively) and different band patterns on high resolution gel electrophoresis suggesting an overall high extraction efficiency. This difference in the extraction efficiency between the model soil system and environmental samples may be attributed to different affinity of seeded and native DNA to soil particles.  相似文献   

10.
11.
12.
REAL-TIME PCR方法测定转基因小麦中外源基因拷贝数   总被引:3,自引:1,他引:3  
采用SYBR GreenⅠ real-time PCR方法检测7株转基因小麦中外源半夏凝集素基因的拷贝数。以小麦蜡质基因(wx012)作为内参基因,以未转基因小麦基因组DNA为内参基因标准品进行5倍梯度稀释得到内参基因CT值与起始模板量的相关性标准曲线:y=-0.2667x+6.98;以含半夏凝集素基因(pta)的质粒DNA为目的基的因标准品同样进行5倍梯度稀释,建立目的基因CT值与起始模板量的相关性标准曲线:y=-0.2118x+4.53。通过SYBR GreenⅠ real-time PCR分别获得每一样本中目的基因和内参基因的CT值,将CT值分别代入标准曲线计算该样本中内参基因和目的基因起始模板量,目的基因与内参基因起始模板量比值即是目的基因在该转基因植株中的拷贝数。计算结果为:单拷贝的有1株,2个拷贝1株,3拷贝和4拷贝的各有2株,其中有1株为假阳性植株。  相似文献   

13.
Real-time PCR is a new and highly sensitive method for the quantification of microbial organisms in environmental samples. This work was conducted to evaluate real-time PCR with SybrGreen (SG) detection as quantification method for Desulfotomaculum lineage 1 organisms in samples of rice field soil. The method was optimized in several parameters like SG concentration. These allowed quantitative PCR with different primer combinations yielding PCR products with lengths up to 1066 bp and with sensitivities of 10(2) targets for all assays. The detection limit in environmental DNA extracts (rice bulk soil and rice roots) was 10(6) targets per gram dry weight according to the dilution of the DNA extracts necessary to overcome PCR inhibition of humic substances. A verification, that the fluorescence increase was due to specific PCR products, was done by agarose gel electrophoresis since melting curve analysis of the PCR products did not show a distinct peak in the first derivative, when the environmental DNA extracts were used in PCR. Amplification with a primer combination specific for Desulfotomaculum lineage 1 organisms showed an abundance of this group of approximately 2% and 0.5% of the eubacterial 16S rDNA targets in rice bulk soil and rice root samples, respectively. Approximately half of this number was obtained in both habitats with a PCR assay specific for a Desulfotomaculum sequence cluster obtained previously from rice field soil.  相似文献   

14.
We developed a quantitative real-time PCR assay for detection and quantification of Pneumocystis jiroveci in bronchoalveolar lavage (BAL) specimens based on primers and probe targeting the gene encoding beta-tubulin. The assay was able to detect 50 DNA copies per ml of a standard plasmid containing the target sequence. The intra- and interassay coefficients of variation were 0.46%-4.27% and 0.05-2.00% over 5 log(10) values. Fifty-seven controls of human, viruses, bacteria and fungi DNA samples were amplified and found negative. Fifty-three BAL samples sent to the laboratory for diagnosis of pneumocystosis were prospectively investigated by real-time PCR and direct microscopic examinations (DME) using Giemsa stain and direct immunofluorescence. All PCR negative samples were negative by microscopy. Among the 24 (45%) BAL found PCR positive, 8 were positive by microscopy (35%). The copy numbers of the target gene were between 4.4 x 10(3) and 2.8 x 10(6) per ml for the microscopically positive samples and between 8 and 9.2 x 10(3) per ml for the microscopically negative samples. In conclusion, we developed a rapid, sensitive and specific real time PCR for the diagnosis and quantification of Pneumocystis jiroveci in BAL samples.  相似文献   

15.
We developed a quantitative competitive PCR (QC-PCR) system to detect and quantify copper-denitrifying bacteria in environmental samples. The primers were specific to copper-dependent nitrite reductase gene (nirK). We were able to detect about 200 copeis of nirK in the presence of abundant non-specific target DNA and about 1.2 x 10(3)Pseudomonas sp. G-179 cells from one gram of sterilized soil by PCR amplification. A 312-bp nirK internal standard (IS) was constructed, which showed very similar amplification efficiency with the target nirKfragment (349 bp) over 4 orders of magnitude (10(3)-10(6)). The accuracy of this system was evaluated by quantifying various known amount of nirK DNA. The linear regressions were obtained with a R(2) of 0.9867 for 10(3)copies of nirK, 0.9917 for 10(4) copies of nirK, 0.9899 for 10(5) copies of nirK and 0.9846 for 10(6) copies of nirK. A high correlation between measured nirK and calculated nirK (slope of 1.0398, R(2)=0.9992) demonstrated that an accurate measurement could be achieved with this system. Using this method, we quantified nirK in several A-horizon and stream sediment samples from eastern Tennessee. In general, the abundance of nirK was in the range of 10(8)-10(9) copies g soil(-1) dry weight. The nirK content in the soil samples appeared correlated with NH(4)(N) content in the soil. The activities of copper-denitrifying bacteria were evaluated by quantifying cDNA of nirK. In most of sample examined, the content of nirK cDNA was less than 10(5) copies g soil(-1) dry weight. Higher nirK cDNA content (>10(6) copies g soil(-1) dry weight) was detected from both sediment samples at Rattlebox Creek and the Walker Branch West Ridge. Although the stream sediment samples at the Walker Branch West Ridge contained less half of the nirK gene content as compared to A-horizon sample, the activities of copper-denitrifying bacteria were almost 600 times higher than in the A-horizon sample.  相似文献   

16.
Two real-time PCR assays targeting the small-subunit (SSU) ribosomal DNA (rDNA) were designed to assess the proportional biomass of diatoms and dinoflagellates in marine coastal water. The reverse primer for the diatom assay was designed to be class specific, and the dinoflagellate-specific reverse primer was obtained from the literature. For both targets, we used universal eukaryotic SSU rDNA forward primers. Specificity was confirmed by using a BLAST search and by amplification of cultures of various phytoplankton taxa. Reaction conditions were optimized for each primer set with linearized plasmids from cloned SSU rDNA fragments. The number of SSU rDNA copies per cell was estimated for six species of diatoms and nine species of dinoflagellates; these were significantly correlated to the biovolumes of the cells. Nineteen field samples were collected along the Swedish west coast and subjected to the two real-time PCR assays. The linear regression of the proportion of SSU rDNA copies of dinoflagellate and diatom origin versus the proportion of dinoflagellate and diatom biovolumes or biomass per liter was significant. For diatoms, linear regression of the number of SSU rDNA copies versus biovolume or biomass per liter was significant, but no such significant correlation was detected in the field samples for dinoflagellates. The method described will be useful for estimating the proportion of dinoflagellate versus diatom biovolume or biomass and the absolute diatom biovolume or biomass in various aquatic disciplines.  相似文献   

17.
鉴别伪狂犬病病毒野毒与疫苗毒荧光定量PCR方法的建立   总被引:2,自引:0,他引:2  
根据猪伪狂犬病病毒(PRV) gH、gE基因的序列, 设计了两对引物及其对应的TaqMan探针, 通过对引物、探针、Mg2+的浓度和样品DNA提取方法等进行优化, 建立了鉴别PRV野毒与疫苗毒感染的荧光定量PCR方法。该方法线性范围为101~108拷贝/mL, 达8个数量级, 灵敏度可达101拷贝/mL, 比常规PCR高100倍。用此方法对60份疑似组织样品进行检测, 并与血清中和试验、常规PCR相比较, 结果显示该方法具有快速、灵敏、特异、重复性好和能对样品进行定量检测等优点, 并且该法以闭管的模式操作, 减少了后续步骤污染的可能性, 整个PCR检测过程不到2 h。此方法的建立, 为猪伪狂犬病病毒的早期鉴别诊断和定量分析猪伪狂犬病病毒感染程度奠定了基础。  相似文献   

18.
A SybrGreen real-time PCR assay was developed to detect and quantify both total and selected 16S rDNA species of bacteria and archaea involved in the bioleaching of metals from sulfide ores. A set of specific and universal primers based on 16S rDNA sequences was designed and validated for specific detection and quantification of DNA isolated from representative strains of Acidianus brierleyi, Sulfolobus sp., Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, Acidithiobacillus caldus, and Leptospirillum ferrooxidans. An artificial sequence based on 16S rDNA was constructed to quantify total 16S rDNA in mixed DNA samples. The real-time PCR assay was further validated using a mixture of 16S rDNA amplicons derived from the six different species, each added at a known amount. Finally, the real-time PCR assay was used to monitor the change of 16S rDNA copies of four bioleaching strains inoculated into chalcopyrite airlift column reactors operated at different temperatures. The growth dynamics of these strains correlated well with the expected effects of temperature in the chalcopyrite-leaching environment. The suitability of this method for monitoring microbial populations in industrial bioleaching environments is discussed.  相似文献   

19.
A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 x 10(-1) and 1.14 x 10(4) cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 +/- 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (> or =98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.  相似文献   

20.
Real-time PCR has been widely used to evaluate gene abundance in natural microbial habitats. However, PCR-inhibitory substances often reduce the efficiency of PCR, leading to the underestimation of target gene copy numbers. Digital PCR using microfluidics is a new approach that allows absolute quantification of DNA molecules. In this study, digital PCR was applied to environmental samples, and the effect of PCR inhibitors on DNA quantification was tested. In the control experiment using λ DNA and humic acids, underestimation of λ DNA at 1/4400 of the theoretical value was observed with 6.58ngμL(-1) humic acids. In contrast, digital PCR provided accurate quantification data with a concentration of humic acids up to 9.34ngμL(-1). The inhibitory effect of paddy field soil extract on quantification of the archaeal 16S rRNA gene was also tested. By diluting the DNA extract, quantified copy numbers from real-time PCR and digital PCR became similar, indicating that dilution was a useful way to remedy PCR inhibition. The dilution strategy was, however, not applicable to all natural environmental samples. For example, when marine subsurface sediment samples were tested the copy number of archaeal 16S rRNA genes was 1.04×10(3)copies/g-sediment by digital PCR, whereas real-time PCR only resulted in 4.64×10(2)copies/g-sediment, which was most likely due to an inhibitory effect. The data from this study demonstrated that inhibitory substances had little effect on DNA quantification using microfluidics and digital PCR, and showed the great advantages of digital PCR in accurate quantifications of DNA extracted from various microbial habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号