共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 1 diabetes via up-regulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, it has not been addressed whether SFN also prevents DN from type 2 diabetes or which Nrf2 downstream gene(s) play(s) the key role in SFN renal protection. Here we investigated whether Nrf2 is required for SFN protection against type 2 diabetes-induced DN and whether metallothionein (MT) is an Nrf2 downstream antioxidant using Nrf2 knockout (Nrf2-null) mice. In addition, MT knockout mice were used to further verify if MT is indispensable for SFN protection against DN. Diabetes-increased albuminuria, renal fibrosis, and inflammation were significantly prevented by SFN, and Nrf2 and MT expression was increased. However, SFN renal protection was completely lost in Nrf2-null diabetic mice, confirming the pivotal role of Nrf2 in SFN protection from type 2 diabetes-induced DN. Moreover, SFN failed to up-regulate MT in the absence of Nrf2, suggesting that MT is an Nrf2 downstream antioxidant. MT deletion resulted in a partial, but significant attenuation of SFN renal protection from type 2 diabetes, demonstrating a partial requirement for MT for SFN renal protection. Therefore, the present study demonstrates for the first time that as an Nrf2 downstream antioxidant, MT plays an important, though partial, role in mediating SFN renal protection from type 2 diabetes. 相似文献
2.
Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the detailed mechanism of reactive oxygen species (ROS) regulation is still unclear. This study examined the effect of high-salt diet on ROS production and expression of antioxidant enzymes in control and experimentally diabetic rats. Wistar fatty rats (WFR) as a type 2 diabetes mellitus model and Wistar lean rats (WLR) as a control were fed a normal-salt diet (NS) and high-salt diet (HS) from the age of 6 to 14 weeks. We then examined the blood pressure, urinary albumin excretion (UAE), and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels. The expression of antioxidant enzymes including α-catalase (CAT), Cu-Zn superoxide dismutase (SOD), Mn SOD, and glutathione peroxidase (GPx) were analyzed in the glomeruli of the rats using Western blotting. The expression of NAD(P)H oxidase p47phox and NFκB p65 was evaluated using immunohistochemical staining. By 14 weeks of age, the WFR-HS group exhibited hypertension and markedly increased UAE. The level of 8-OHdG, a marker of oxidative damage, in the WFR-HS group was also higher than that in the WLR groups or WFR-NS group. The expression of α-CAT and Mn SOD proteins was significantly decreased in isolated glomeruli in the WFR-HS group. GPx and Cu-Zn SOD expression did not differ between the WFR and WLR groups. High expression of ROS and decreases in antioxidants were seen in the glomeruli of diabetic rats with hypertension, suggesting that oxidative stress may be involved in the development of DN. 相似文献
3.
Eder E Wacker M Lutz U Nair J Fang X Bartsch H Beland FA Schlatter J Lutz WK 《Chemico-biological interactions》2006,159(2):81-89
Both animal and epidemiological studies support an effect of fatty acid composition in the diet on cancer development, in particular on colon cancer. We investigated the modulating effect of supplementation of the diet of female F344 rats with sunflower-, rapeseed-, olive-, or coconut oil on the formation of the promutagenic, exocyclic DNA adducts in the liver, an organ where major metabolism of fatty acids takes place. 1,N(6)-ethenodeoxyadenosine (etheno-dA), 3,N(4)-ethenodeoxycytidine (etheno-dC) and 1,N(2)-propandodeoxyguanosine from 4-hydroxy-2-nonenal (HNE-dGp) were determined as markers for DNA-damage derived from lipid peroxidation products and markers for oxidative stress. 8-Oxo-deoxyguanosine (8-Oxo-dG) was also measured as direct oxidative stress marker. The body weight of the rats was not influenced by the four diets containing the different vegetable oils during the 4-week feeding period. Highest adduct levels of etheno-dC (430 +/- 181 adducts/10(9) parent bases), HNE-dGp (617 +/- 96 adducts/10(9) parent bases) and 8-Oxo-dG (37,400 +/- 12,200 adducts/10(9) parent bases) were seen in rats on sunflower oil diet (highest linoleic acid content). Highest adducts levels of etheno-dA (133 +/- 113 adducts/10(9) parent bases) were found in coconut oil diet (lowest content of linoleic acid). Weakly positive correlations between linoleic acid content in the four diet groups were only observed for levels of HNE-dGp and 8-Oxo-dG. Neither the diet based on olive oil (which contains mainly oleic acid) nor the diet based on rapeseed oil (containing alpha-linolenic acid) exerted any significant protective effect against oxidative DNA damage. Our results indicate that a high linoleic acid diet may contribute to oxidative stress in the liver of female rats leading to a marginal increase in oxidative DNA-damage. 相似文献
4.
Long J Wang Y Wang W Chang BH Danesh FR 《The Journal of biological chemistry》2011,286(13):11837-11848
Although several recent publications have suggested that microRNAs contribute to the pathogenesis of diabetic nephropathy, the role of miRNAs in vivo still remains poorly understood. Using an integrated in vitro and in vivo comparative miRNA expression array, we identified miR-29c as a signature miRNA in the diabetic environment. We validated our profiling array data by examining miR-29c expression in the kidney glomeruli obtained from db/db mice in vivo and in kidney microvascular endothelial cells and podocytes treated with high glucose in vitro. Functionally, we found that miR-29c induces cell apoptosis and increases extracellular matrix protein accumulation. Indeed, forced expression of miR-29c strongly induced podocyte apoptosis. Conversely, knockdown of miR-29c prevented high glucose-induced cell apoptosis. We also identified Sprouty homolog 1 (Spry1) as a direct target of miR-29c with a nearly perfect complementarity between miR-29c and the 3'-untranslated region (UTR) of mouse Spry1. Expression of miR-29c decreased the luciferase activity of Spry1 when co-transfected with the mouse Spry1 3'-UTR reporter construct. Overexpression of miR-29c decreased the levels of Spry1 protein and promoted activation of Rho kinase. Importantly, knockdown of miR-29c by a specific antisense oligonucleotide significantly reduced albuminuria and kidney mesangial matrix accumulation in the db/db mice model in vivo. These findings identify miR-29c as a novel target in diabetic nephropathy and provide new insights into the role of miR-29c in a previously unrecognized signaling cascade involving Spry1 and Rho kinase activation. 相似文献
5.
Excessive tissue iron levels are associated with the increase of oxidative/nitrative stress which contributes to tissue damage that may elevate the risk of diabetes. Therefore, we investigated the effects of iron on diabetes-associated liver injury and whether iron-related tyrosine nitration participated in this process. Rats were randomly divided into four groups: control, iron overload (300 mg/kg iron dextran, i.p.), diabetic (35 mg/kg of streptozotocin i.p. after administration of a high-fat diet) and diabetic simultaneously treated with iron. Iron supplement markedly increased diabetes-mediated liver damage and hepatic dysfunction by increasing liver/body weight ratio, serum levels of aspartate and alanine aminotransferase, and histological examination, which were correlated with elevated levels of lipid peroxidation, protein carbonyls and tyrosine nitration, oxidative metabolism of nitric oxide, and reduced antioxidant capacity. Consequently, the extent of oxidized/nitrated glucokinase was markedly increased in the iron-treated diabetic rats that contribute to a decrease in its expression and activity. Further studies revealed a significant contribution of iron-induced specific glucokinase nitration sites to its inactivation. In conclusion, iron facilitates diabetes-mediated elevation of oxidative/nitrative stress, simultaneously impairs liver GK, and can be a link between enzymatic changes and hepatic dysfunction. These findings may provide new insight on the role of iron in the pathogenesis of diabetes mellitus. 相似文献
6.
《Redox report : communications in free radical research》2013,18(6):223-229
AbstractNicotinamide adenine dinucleotide phosphate (NADPH) oxidase is upregulated in a variety of tissues in obesity. It is still unclear as to whether NADPH oxidase upregulation in a specific tissue is part of a systemic response. Here we analyzed the expression pattern of NADPH oxidase in vascular, adipose, and kidney tissues in a rat model of diet-induced obesity. After weaning, rats were fed either a normal or high-fat diet for 12 weeks. The high-fat diet resulted in 20% increased body weight. In the aorta, Nox4 expression was increased by three-fold in obese rats. Upregulations of p22phox and p47phox in adipose, and Nox4, p22phox, and p47phox in kidney were observed in obesity. Marked increases in plasma leptin and insulin were observed, with more modest changes in adiponectin in obese rats. The average systolic blood pressure in the obese group was 11 mmHg higher than that of lean rats (P < 0.005). There was a significant correlation between blood pressure and aortic Nox4 expression (P < 0.01). In cultured vascular smooth muscle cells, adiponectin reduced the expression of Nox4 in a protein kinase A-dependent manner. Our results suggest that upregulation of NADPH oxidase in multiple tissues during obesity appears to be a systemic response. At least in vitro, adiponectin may have a protective antioxidant role by suppressing vascular NADPH oxidase expression. The association between NADPH oxidase Nox4 expression in the vasculature and the elevated blood pressure in obesity requires further investigation. 相似文献
7.
González-Correa JA Arrebola MM Guerrero A Cañada MJ Muñoz Marín J Sánchez De la Cuesta F De la Cruz JP 《Life sciences》2006,79(15):1405-1412
We analyze the effect of the combination of acetylsalicylic acid (2 mg/kg/day p.o.) and alpha-tocopherol (25 mg/kg/day p.o.) in a type-1-like experimental model of diabetes mellitus on platelet factors, endothelial antithrombotic factors and tissue oxidative stress. In diabetic rats, the combination of drugs had a greater inhibitory effect on platelet aggregation than in untreated control animals with diabetes (88.87%). The combination of drugs had little effect on the inhibition of thromboxane production (-90.81%) in comparison to acetylsalicylic acid alone (-84.66%), potentiated prostacyclin production (+162%) in comparison to alpha-tocopherol alone (+30.55%), and potentiated nitric oxide production (+241%) in comparison to either drug alone (acetylsalicylic acid +125%, alpha-tocopherol +142%). The combination of the two drugs improved the thromboxane/prostacyclin balance (0.145+/-0.009) in comparison to untreated diabetic animals (4.221+/-0.264) and in untreated healthy animals (0.651+/-0.045). It did not potentiate the antioxidant effect of either drug alone, but did increase tissue concentrations of reduced glutathione, especially in vascular tissue (+90.09% in comparison to untreated animals). In conclusion, in the experimental model of diabetes tested here, the combination of acetylsalicylic acid and alpha-tocopherol led to beneficial changes that can help protect tissues from thrombotic and ischemic phenomena. 相似文献
8.
The therapeutic potential of taurine was investigated under diabetic conditions. Alloxan diabetic rabbits were treated daily for three weeks with 1% taurine in drinking water. The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios and the activities of catalase, superoxide dismutase and the enzymes of glutathione metabolism; 5) renal NADPH oxidase activity; 6) the rates of renal and hepatic gluconeogenesis. Histological studies of kidneys were also performed. Taurine administration to diabetic rabbits resulted in 30% decrease in serum glucose level and the normalisation of diabetes-elevated rate of renal gluconeogenesis. It also decreased serum urea and creatinine concentrations, attenuated diabetes-evoked decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. Animals treated with taurine exhibited elevated activities of hepatic gamma-glutamylcysteine syntetase and renal glutathione reductase and catalase. Moreover, taurine treatment evoked the normalisation of diabetes-stimulated activity of renal NADPH oxidase and attenuated both albuminuria and glomerulopathy characteristic of diabetes. In view of these data, it is concluded that: 1) diminished rate of renal gluconeogenesis seems to contribute to hypoglycaemic effect of taurine; 2) taurine-induced increase in the activities of catalase and the enzymes of glutathione metabolism is of importance for antioxidative action of this amino acid and 3) taurine nephroprotective properties might result from diminished renal NADPH oxidase activity. Thus, taurine seems to be beneficial for the therapy of both diabetes and diabetic nephropathy. 相似文献
9.
Marni E. Cueno Kenichi Imai Muneaki Tamura Kuniyasu Ochiai 《Cell stress & chaperones》2014,19(2):295-298
Butyric acid (BA) induces jugular blood mitochondrial oxidative stress, whereas heme-induced oxidative stress was previously reported to inhibit SIRT1 in vitro. This would imply that BA-induced oxidative stress may similarly affect SIRT1. Here, we elucidated the BA effects on jugular blood cytosolic oxidative stress and SIRT1. Jugular blood cytosol was collected 0, 60, and 180 min after BA injection into rat gingival tissues and used throughout the study. Blood cytosolic oxidative stress induction, heme accumulation, NADPH oxidase (NOX) activation, nicotinamide adenine dinucleotide (NAD+) and NADP pool levels, NAD kinase (NADK), and SIRT1 amounts were determined. We found that BA retention in the gingival tissue induces blood cytosolic oxidative stress and heme accumulation which we correlated to both NOX activation and NADP pool increase. Moreover, we showed that BA-related NADP pool build-up is associated with NADK increase which we suspect decreased NAD+ levels and consequentially lowered SIRT1 amounts in the rat blood cytosol. 相似文献
10.
缺氧诱导因子1及下游NADPH氧化酶在酒精性肝病大鼠肝组织中的表达及意义 总被引:1,自引:1,他引:1
目的探讨缺氧诱导因子-1(HIF-1)及NADPH氧化酶(NOX)在酒精性肝病(ALD)发病过程中的表达及意义。方法 Wistar大鼠正常饲养1周后随机分为正常对照组和模型组,模型组大鼠采用逐渐增加酒精浓度和剂量(30%-60%,5-9g/kg/d)的方法酒精灌胃,分别于4周、8周、12周和16周末随机分批处死,留取肝组织标本并制备10%的肝匀浆。应用比色法检测肝匀浆肝组织甘油三酯(TG)、氧自由基(OFR)、丙二醛(MDA)和超氧化物歧化酶(SOD)的含量,免疫组织化学染色和Western blot方法观察肝组织HIF-1α蛋白表达,RT-PCR方法分别检测HIF-1α及P47phox NOX mRNA的表达。结果成功制备酒精性肝病大鼠模型,随着造模时间的延长肝组织HIF-1α蛋白表达量及HIF-1α和P47phox NOX mRNA逐渐增强,至16周时达高峰,HIF-1α与P47phox NOX mRNA相对表达量间呈正相关(r=0.73,P0.01),P47phox NOX mRNA相对表达量与TG、OFR和MDA的含量呈正相关,相关系数分别为0.63、0.68和0.65,P值均0.01,与SOD呈负相关,相关系数为-0.65,P0.01。结论 ALD模型大鼠肝组织HIF-α及下游NOX表达增强,与肝脏氧化应激密切相关,参与酒精性肝病的发病过程。 相似文献
11.
Lipoic acid ameliorates oxidative stress and renal injury in alloxan diabetic rabbits 总被引:2,自引:0,他引:2
The therapeutic potential of lipoic acid (LA) in diabetes and diabetic nephropathy treatment was elucidated. Alloxan diabetic rabbits were treated daily for three weeks with either 10 or 50 mg of LA per kg body weight (i.p.). The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios, cysteine contents and the activities of the enzymes of glutathione metabolism; and 5) the activity of renal NADPH oxidase. Histological studies of kidneys were also performed. The treatment of diabetic rabbits with 50 mg of LA resulted in lethal hypoglycaemia in 50% of animals studied. Although the low dose of LA did not change serum glucose concentration, it decreased serum urea and creatinine concentrations, attenuated diabetes-induced decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. LA did not change the activities of the enzymes of glutathione metabolism, but it elevated hepatic content of cysteine, which limits the rate of glutathione biosynthesis. Moreover, LA lowered urine albumin concentration and attenuated glomerulopathy characteristic of diabetes. However, it did not affect diabetes-stimulated activity of renal NADPH oxidase. In view of these data, it is concluded that low doses of LA might be useful for the therapy of diabetes and diabetic nephropathy. Beneficial action of LA seems to result mainly from direct scavenging of HFR and restoring glutathione redox state due to elevation of intracellular cysteine levels. 相似文献
12.
SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats 总被引:1,自引:0,他引:1
Manuela Aragno Chiara E. Tomasinelli Ilenia Vercellinatto Maria G. Catalano Massimo Collino Roberto Fantozzi Oliviero Danni Giuseppe Boccuzzi 《Free radical biology & medicine》2009,47(7):1067-1074
This study concentrated on the initial events triggering the development of nonalcoholic fatty liver disease induced by a high-fat plus fructose (HF-F) diet and on the possibility of delaying nonalcoholic fatty liver disease progression by adding dehydroepiandrosterone (DHEA) to the diet. Sterol regulatory element binding protein-1c (SREBP-1c) activation plays a crucial role in the progression of nonalcoholic fatty liver disease induced by an HF-F diet. This study investigated the protective effects of DHEA, a compound of physiological origin with multitargeted antioxidant properties, against the induction of SREBP-1c and on liver insulin resistance in rats fed an HF-F diet, which mimics a typical unhealthy Western diet. An HF-F diet, fortified or not with DHEA (0.01%, w/w), was administered for 15 weeks to male Wistar rats. After HF-F the liver showed unbalanced oxidative status, fatty infiltration, hepatic insulin resistance, and inflammation. The addition of DHEA to the diet reduced both activation of oxidative-stress-dependent pathways and expression of SREBP-1c and partially restored the expression of liver X-activated receptor-α and insulin receptor substrate-2 genes. DHEA supplementation of the HF-F diet reduced de novo lipogenesis and delayed progression of nonalcoholic fatty liver disease, demonstrating a relationship between oxidative stress and nonalcoholic fatty liver disease via SREBP-1c. 相似文献
13.
Diabetic nephropathy is the common cause of leading to end stage of renal disease (ESRD). Satureja khozestanica essential oil (SKEO) was used as an antioxidant and antidiabetic for the inhibition of diabetic nephropathy. Forty male rats were uninephrectomized and divided in four groups randomly; group one as control, group two diabetic untreatment, groups three and four treatment with SKEO by 250 or 500 ppm in drinking water, respectively. Diabetes was induced in the second, third and fourth groups by alloxan injection subcutaneously. After eight weeks treatment, serum malondialdehyde, serum creatinine and serum urea were measured. The kidney paraffin sections were stained by periodic acid Schiff method. Glomerular volume and glomerular number were estimated by stereological rules. Glomerular sclerosis was studied semi-quantitatively. The means were compared by SPSS 13 software and Mann-Whitney test at p < 0.05. Satureja khozestanica essential oil (250 or 500 ppm) significantly inhibited the progression of glomerular hypertrophy, glomerular number loss, glomerulosclerosis, lipid peroxidation, serum urea and creatinine compared with the diabetic untreated group. The level of glomerular number, serum malondialdehyde, serum creatinine and urea in the treated groups was significantly maintained at the same level as that of the control group. In conclusion, satureja essential oil significantly can ameliorate glomerular hypertrophy, loss of glomerular number, glomerulosclerosis and attenuated serum urea and serum creatinine in diabetic rats. 相似文献
14.
A number of infectious agents have been implicated in the development of vascular diseases such as atherosclerosis and posttransplantation arterial restenosis. Cytomegalovirus (CMV) has been reported to cause obliteration of coronary arteries by a progressive vasculopathy that involves proliferation of medial smooth muscle cells (SMC). In this study, we report that CMV enhances the serum-induced proliferation of human coronary SMC through activation of a superoxide-generating NADPH oxidase. Exposure of SMC to CMV for 2 h was associated with an 80% increase in NADPH oxidase. This increase in oxidase activity was associated with a two-fold increase in serum-induced DNA synthesis (5-bromo-2'-deoxyuridine incorporation) and significant interleukin-8 (IL-8) production by SMC. Diphenylene iodonium, an inhibitor of NADPH oxidase, significantly inhibited CMV-induced IL-8 production and promotion of serum-induced DNA synthesis. Similar effects were seen following pretreatment of SMC with N-acetyl cysteine, a potent antioxidant, suggesting that oxidative stress following CMV exposure might be responsible for triggering the proliferation of SMC. From this study, we conclude that CMV-mediated promotion of SMC growth is redox sensitive and may be mediated by NADPH oxidase. 相似文献
15.
Several recent studies have demonstrated that organophosphorus insecticides (OPI) possess the potential to disrupt glucose homeostasis leading to hyperglycemia in experimental animals. The propensity of OPI to induce hyperglycemia along with oxidative stress may have far-reaching consequences on diabetic outcomes and associated complications. The primary objective of this study was to assess the potential of monocrotophos (MCP), an extensively used OPI, on hepatic and renal oxidative stress markers and dysregulation of hepatic glucose homeostasis in experimentally induced diabetic rats. Rats rendered diabetic by a single dose of streptozotocin (60 mg/kg b.w) were orally administered MCP (0.9 mg/kg b.w/d for 5 d). Monocrotophos per se caused only a marginal increase in blood glucose levels but significantly elevated the blood glucose levels and also disrupted glucose homeostasis by depleting liver glycogen content and increasing the gluconeogenetic enzyme activities in diabetic rats. Experimentally induced diabetes was also associated with alterations in antioxidant enzymes in liver and kidney. MCP markedly enhanced lipid peroxidation in kidney and altered the enzymatic antioxidant defense mechanisms in both liver and kidney of diabetic rats. Collectively our data provides evidence that MCP has the propensity to augment the oxidative stress and further disrupt glucose homeostasis in diabetic rats. 相似文献
16.
17.
Dahech I Belghith KS Hamden K Feki A Belghith H Mejdoub H 《International journal of biological macromolecules》2011,49(4):742-746
This study aims to examine the effects of polysaccharide levan on oxidative stress and hyperglycemia in alloxan-induced diabetic rats. Levan, used in this study, was a microbial levan synthetisized by a non pathogenic bacteria recently isolated and identified as Bacillus licheniformis. Animals were allocated into four groups of six rats each: a control group (Control), diabetic group (Diab.), normal rats received levan (L) and diabetic rats fed with levan (DL). Treated diabetic rats were administrated with levan in drinking water through oral gavage for 60 days. The administration of polysaccharide levan in diabetic rats caused a significant increase in glycogen level by 52% and a decrease in glucose level in plasma by 52%. Similarly, the administration of polysaccharide levan in diabetic rats caused a decrease in the thiobarbituric acid-reactive substances (TBARS) by 31%, 41%, 39% and 25%, an increase in superoxide dismutase (SOD) by 40%, 50%, 44% and 34%, and in catalase (CAT) by 18%, 20%, 12% and 18% in liver, kidney, pancreas and heart, respectively. Furthermore, a significant decrease in hepatic and renal indices toxicity was observed, i.e. alkalines phosphatases (ALP), aspartate and lactate transaminases (AST and ALT) activities, total bilirubin, creatinine and urea levels by 19%, 31%, 32%, 36%, 37% and 23%, respectively. The results show that administration of polysaccharide levan can restore abnormal oxidative indice near normal levels. This study demonstrates, for the first time, that polysaccharide levan is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggests that levan supplemented to diet may be helpful in preventing diabetic complications in adult rats. 相似文献
18.
Tominaga T Abe H Ueda O Goto C Nakahara K Murakami T Matsubara T Mima A Nagai K Araoka T Kishi S Fukushima N Jishage K Doi T 《The Journal of biological chemistry》2011,286(22):20109-20116
19.
Ana Paula Oliveira Ferreira Fernanda Silva Rodrigues Iuri Domingues Della-Pace Bibiana Castagna Mota Sara Marchesan Oliveira Camila de Campos Velho Gewehr Franciane Bobinski Clarissa Vasconcelos de Oliveira Juliana Sperotto Brum Mauro Schneider Oliveira Ana Flavia Furian Claudio Severo Lombardo de Barros Juliano Ferreira Adair Roberto Soares dos Santos Michele Rechia Fighera Luiz Fernando Freire Royes 《Neurochemistry international》2013
20.
目的:探讨砷暴露诱导细胞氧化应激的分子机制。方法:采用人正常肝细胞进行亚砷酸钠和砷酸钠的暴露处理,并设相应对照组,采用SOD模拟物MnTMPyP和还原型谷胱甘肽(reducedglutathione,GSH)预处理,检测细胞超氧阴离子(02。)和细胞整体ROS的水平。WestemBlot方法检测细胞氧化/抗氧化重要酶微粒体谷胱甘肽硫转移酶(microsomalglutathioneS-transferase-l,Mgst.1)、半胱氨酸双加氧酶l(cysteinedioxygenasel,Cd01)和NADPH氧化酶的催化亚基NOX4的表达。针对NADPH氧化酶,采用特异性抑制剂(diphenyleneiodoniumchloride,DPI)进行预处理,观察对砷暴露引起的细胞ROS水平及细胞凋亡的影响。结果:砷暴露能够显著诱导细胞超氧阴离子的产生,提高细胞整体ROS水平,其中三价砷(亚砷酸钠,A矿)诱导氧化应激作用显著强于五价砷(砷酸钠,As5+)。亚砷酸钠能够显著提高NOX4的表达。针对NADPH氧化酶的抑制剂DPI能够显著抑制砷暴露引起的细胞ROS水平升高以及细胞凋亡的增加。结论:NADPH氧化酶是砷暴露诱导人肝细胞的作用靶点,砷能够通过NADPH氧化酶产生大量超氧阴离子,提高ROS水平,造成氧化应激,诱导人正常肝细胞凋亡。 相似文献