首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) is a ligand of multiple G protein–coupled receptors. The LPA1–3 receptors are members of the endothelial cell differentiation gene (Edg) family. LPA4/p2y9/GPR23, a member of the purinergic receptor family, and recently identified LPA5/GPR92 and p2y5 are structurally distant from the canonical Edg LPA receptors. Here we report targeted disruption of lpa4 in mice. Although LPA4-deficient mice displayed no apparent abnormalities, LPA4-deficient mouse embryonic fibroblasts (MEFs) were hypersensitive to LPA-induced cell migration. Consistent with negative modulation of the phosphatidylinositol 3 kinase pathway by LPA4, LPA4 deficiency potentiated Akt and Rac but decreased Rho activation induced by LPA. Reconstitution of LPA4 converted LPA4-negative cells into a less motile phenotype. In support of the biological relevance of these observations, ectopic expression of LPA4 strongly inhibited migration and invasion of human cancer cells. When coexpressed with LPA1 in B103 neuroblastoma cells devoid of endogenous LPA receptors, LPA4 attenuated LPA1-driven migration and invasion, indicating functional antagonism between the two subtypes of LPA receptors. These results provide genetic and biochemical evidence that LPA4 is a suppressor of LPA-dependent cell migration and invasion in contrast to the motility-stimulating Edg LPA receptors.  相似文献   

2.
Lysophosphatidic acid (LPA) is a low-molecular-weight lysophospholipid enriched in platelets and mildly oxidized low-density lipoprotein (OxLDL). It is suggested that LPA is involved in atherosclerosis, and our previous studies showed that LPA regulates inflammation in multiple cell types. The main aim of this study was to investigate the effects of LPA on the uptake of OxLDL by mouse J774A.1 macrophages. We observed that LPA upregulated fluorescence-labeled DiI-OxLDL uptake in J774A.1 cells. Meanwhile, expression of the class A scavenger receptor (SR-A), a receptor for modified LDL, was also enhanced. Furthermore, pertussis toxin (PTx) or Ki16425 significantly abolished LPA's effects, indicating that Gi and LPA3 are involved in OxLDL uptake and SR-A expression. Of most importance, the LPA-induced OxLDL uptake could be inhibited when cells were incubated with a functional blocking antibody of SR-A. Our results suggest that LPA-enhanced OxLDL uptake is mediated via LPA3-Gi activation and subsequent SR-A expression.  相似文献   

3.
4.
Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors and mediate a variety of cellular responses through the binding of LPA. So far, six types of LPA receptors (LPA receptor-1 (LPA1) to LPA6) have been identified. Recently, it has been demonstrated that each LPA receptor has opposite effects on malignant property of cancer cells. In this study, to evaluate an involvement of LPA receptors on angiogenic process in mammary tumor cells, we generated Lpar1- and Lpar3-expressing (FM3A-a1 and FM3A-a3A9, respectively) cells from FM3A cells, and investigated the effects on cell proliferation and migration abilities of endothelial F-2 cells by those cells. In Vegf-A and Vegf-C genes, FM3A-a1 cells indicated high expression and FM3A-a3A9 cells showed low expression, compared with control cells. When F-2 cells were cultured with a supernatant from FM3A-a1 cells, the cell growth rate and migration ability of F-2 cells was significantly higher than control cells. By contrast, a supernatant from FM3A-a3A9 cells significantly inhibited those abilities of F-2 cells. These results suggest that LPA1 and LPA3 may play opposite roles on the regulation of endothelial cells in mouse mammary tumor FM3A cells.  相似文献   

5.
Lysophosphatidic acid (LPA) and its ether analog alkyl-glycerophosphate (AGP) elicit arterial wall remodeling when applied intralumenally into the uninjured carotid artery. LPA is the ligand of eight GPCRs and the peroxisome proliferator-activated receptor γ (PPARγ). We pursued a gene knockout strategy to identify the LPA receptor subtypes necessary for the neointimal response in a non-injury model of carotid remodeling and also compared the effects of AGP and the PPARγ agonist rosiglitazone (ROSI) on balloon injury-elicited neointima development. In the balloon injury model AGP significantly increased neointima; however, rosiglitazone application attenuated it. AGP and ROSI were also applied intralumenally for 1 h without injury into the carotid arteries of LPA1, LPA2, LPA1&2 double knockout, and Mx1Cre-inducible conditional PPARγ knockout mice targeted to vascular smooth muscle cells, macrophages, and endothelial cells. The neointima was quantified and also stained for CD31, CD68, CD11b, and α-smooth muscle actin markers. In LPA1, LPA2, LPA1&2 GPCR knockout, Mx1Cre transgenic, PPARγfl/−, and uninduced Mx1Cre × PPARγfl/− mice AGP- and ROSI-elicited neointima was indistinguishable in its progression and cytological features from that of WT C57BL/6 mice. In PPARγ−/− knockout mice, generated by activation of Mx1Cre-mediated recombination, AGP and ROSI failed to elicit neointima and vascular wall remodeling. Our findings point to a difference in the effects of AGP and ROSI between the balloon injury- and the non-injury chemically-induced neointima. The present data provide genetic evidence for the requirement of PPARγ in AGP- and ROSI-elicited neointimal thickening in the non-injury model and reveal that the overwhelming majority of the cells in the neointimal layer express α-smooth muscle actin.  相似文献   

6.
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.  相似文献   

7.

Background

Lysophosphatidic acid (LPA) plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA1-3). We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation.

Methods

Wild type, LPA1 heterozygous knockout mice (LPA1+/-), and LPA2 heterozygous knockout mice (LPA2+/-) were sensitized with inactivated Schistosoma mansoni eggs and local antigenic challenge with Schistosoma mansoni soluble egg Ag (SEA) in the lungs. Bronchoalveolar larvage (BAL) fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA.

Results

BAL fluids from Schistosoma mansoni egg-sensitized and challenged wild type mice (4 days of challenge) showed increase of LPA level (~2.8 fold), compared to control mice. LPA2+/- mice, but not LPA1+/- mice, exposed to Schistosoma mansoni egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA2+/- and LPA1+/- mice showed decreases in bronchial goblet cells. LPA2+/- mice, but not LPA1+/- mice showed the decreases in prostaglandin E2 (PGE2) and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA2+/- mice. These results suggest that LPA and LPA receptors are involved in Schistosoma mansoni egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.  相似文献   

8.
Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA1–6). LPA receptor type 1 (LPA1) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA1 is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA1 is known to induce IL-6 and IL-8 secretion, as also do LPA2 and LPA3. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA1,2,3,6; MDA-MB-231: LPA1,2; MCF-7: LPA2,6). Among the set of genes upregulated by LPA only in LPA1-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA1–3 antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA1 (MDA-B02/LPA1) and downregulated for LPA1 (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA1 and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA1. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA1 activation state in patients receiving anti-LPA1 therapies.  相似文献   

9.
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.  相似文献   

10.
11.
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1–LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.  相似文献   

12.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid ligand present in oxidized low-density lipoprotein. The effects of LPA were investigated, first separately on endothelial cells (EC) and monocytes. Using Ki16425 (an LPA1 and LPA3 receptor antagonist), GW9662 [a peroxisome proliferator-activator receptor (PPAR) antagonist], and pertussis toxin (that inhibits Gi/o), we demonstrate that LPA enhances IL-8 and monocyte chemoattractant protein-1 expression through a LPA1-, LPA3-, Gi/o- and PPAR-dependent manner in the EAhy926 cells. The effect of LPA on chemokine overexpression was confirmed in human umbilical vein endothelial cells. LPA was able to enhance monocyte migration at concentrations <1 µM and to inhibit their migration at LPA concentrations >1 µM, as demonstrated by using a chemotaxis assay. We then investigated the effects of LPA on the cross-talk between EC and monocytes by evaluating the chemotactic activity in the supernatants of LPA-treated EC. At 1 µM LPA, both cell types respond cooperatively, favoring monocyte migration. At higher LPA concentration (25 µM), the chemotactic response varies as a function of time. After 4 h, the chemotactic effect of the cytokines secreted by the EC is counteracted by the direct inhibitory effect of LPA on monocytes. For longer periods of time (24 h), we observe a monocyte migration, probably due to lowered concentrations of bioactive LPA, given the induction of lipid phosphate phosphatase-2 in monocytes that may inactivate LPA. These results suggest that LPA activates EC to secrete chemokines that in combination with LPA itself might favor or not favor interactions between endothelium and circulating monocytes. lysophosphatidic acid; endothelial cells; monocytes; chemotaxis  相似文献   

13.
p2y5 is an orphan G protein-coupled receptor that is closely related to the fourth lysophosphatidic acid (LPA) receptor, LPA4. Here we report that p2y5 is a novel LPA receptor coupling to the G13-Rho signaling pathway. “LPA receptor-null” RH7777 and B103 cells exogenously expressing p2y5 showed [3H]LPA binding, LPA-induced [35S]guanosine 5′-3-O-(thio)triphosphate binding, Rho-dependent alternation of cellular morphology, and Gs/13 chimeric protein-mediated cAMP accumulation. LPA-induced contraction of human umbilical vein endothelial cells was suppressed by small interfering RNA knockdown of endogenously expressed p2y5. We also found that 2-acyl-LPA had higher activity to p2y5 than 1-acyl-LPA. A recent study has suggested that p2y5 is an LPA receptor essential for human hair growth. We confirmed that p2y5 is a functional LPA receptor and propose to designate this receptor LPA6.  相似文献   

14.
Lysophosphatidic acid (LPA) is the simplest phospholipid yet possesses myriad biological functions. Until 2003, the functions of LPA were thought to be elicited exclusively by three subtypes of the endothelial differentiation gene (Edg) family of G protein-coupled receptors — LPA1, LPA2, and LPA3. However, several biological functions of LPA could not be assigned to any of these receptors indicating the existence of one or more additional LPA receptor(s). More recently, the discovery of a second cluster of LPA receptors which includes LPA4, LPA5, and LPA6 has paved the way for new avenues of LPA research. Analyses of these non-Edg family LPA receptors have begun to fill in gaps to understand biological functions of LPA such as platelet aggregation and vascular development that could not be ascribed to classical Edg family LPA receptors and are also unveiling new biological functions. Here we review recent progress in the non-Edg family LPA receptor research, with special emphasis on the pharmacology, signaling, and physiological roles of this family of receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

15.
16.
Lysophosphatidic acid (LPA) is a simple physiological lipid and exhibits a variety of cellular responses via the activation of G protein-coupled transmembrane LPA receptors (LPA receptor-1 (LPA1) to LPA6). The aim of our study was to investigate effects of LPA receptors on soft agar colony formation in colon cancer cells treated with anticancer drugs. DLD1 cells were treated with fluorouracil (5-FU) or cisplatin (CDDP) for at least six months (DLD-5FU and DLD-CDDP cells, respectively). LPAR1 gene expression was markedly elevated in DLD-5FU cells. In contrast, DLD-CDDP cells showed the high expression of LPAR6 gene. In colony formation assay, DLD-5FU cells formed markedly large-sized colonies, while no colony formation was observed in DLD1 and DLD-CDDP cells. The large-sized colonies formed in DLD-5FU cells were suppressed by LPA1 knockdown. In contrast, LPA6 knockdown increased the size of colonies. In addition, DLD-5FU cells were further treated with CDDP for three months (DLD-C-F cells). DLD-CDDP cells were also treated with 5-FU (DLD-F-C cells). DLD-C-F cells formed large-sized colonies, but not DLD-F-C cells, correlating with LPAR1 and LPAR6 gene expression levels. These results suggest that LPA1 and LPA6 may regulate the colony formation activity in DLD1 cells treated with anticancer drugs.  相似文献   

17.
Abstract

Lysophosphatidic acid (LPA) is a simple biological lipid and mediates several biological functions with LPA receptors (LPA1 to LPA6). In the present study, to assess whether LPA receptors promote cell-invasive activity of pancreatic cancer cells, highly invasion PANC-R9 cells were established from PANC-1 cells, using Matrigel-coated Cell Culture Insert. The cell-invasive activity of PANC-R9 cells was shown to be approximately 15 times higher than that of PANC-1 cells. LPAR1 expression level was markedly elevated in PANC-R9 cells in comparison with PANC-1 cells, while LPAR3 expression level was reduced. The cell-invasive activity of PANC-R9 cells was enhanced by LPA, but LPA had no impact on PANC-1 cell invasion. Before initiation of the cell invasion assay, PANC-R9 cells were pretreated with dioctanoylglycerol pyrophosphate (DGPP), an antagonist of LPA1/LPA3. The invasive activity of PANC-R9 cells was markedly suppressed by DGPP. Autotaxin (ATX) is a key enzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to LPA. ATX expression level was elevated in PANC-R9 cells compared with PANC-1 cells. In the presence of LPC, the cell motile activity of PANC-R9 cells was markedly stimulated. In contrast, LPC did not affect the cell motile activity of PANC-1 cells. PANC-R9 cell motility was inhibited by an ATX inhibitor, PF-8380. These results suggest that LPA signaling via LPA1 is a potent molecular target for the regulation of tumor progression in PANC-1 cells.  相似文献   

18.
Lysophosphatidic acid (LPA) mediates a variety of biological functions via the binding of G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). This study aimed to investigate the roles of LPA2 and LPA3 in the modulation of chemoresistance to anticancer drug in lung cancer A549 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate to CDDP of A549 cells was significantly elevated by an LPA2 agonist, GRI-977143. To evaluate the roles of LPA2-mediated signaling in cell survival during tumor progression, highly migratory (A549-R10) cells were generated from A549 cells. In the presence of GRI-977143, the cell survival rate to CDDP of A549-R10 cells were markedly higher than that of A549 cells, correlating with LPAR2 expression level. Moreover, to assess the effects of long-term anticancer drug treatment on cell survival, the long-term CDDP treated (A549-CDDP) cells were established from A549 cells. The cell survival rate to CDDP of A549-CDDP cells was elevated by GRI-977143. Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA3 in the cell survival to CDDP of A549 cells, using an LPA3 agonist, 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate ((2S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2S)-OMPT treatment. In the presence of (2S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA3 knockdown. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP.  相似文献   

19.

Introduction

Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients.

Methods

FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry.

Results

The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist.

Conclusions

Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号