首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of peptidomimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of an anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8+ CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization.  相似文献   

2.
Idiotypic determinants of immunoglobulin molecules can evoke both CD4(+) and CD8(+) T responses and exist not only as the integral components of a bona fide antigen binding receptor but also as distinct molecular entities in the processed forms on the cell surface of B lymphocytes. The present work provides experimental evidence for the concept that regulation of memory B cell populations can be achieved through the presentation of idiotypic and anti-idiotypic determinants to helper and cytotoxic cell. The potential of B cells to present antigens to helper and cytotoxic T cells through class II and class I MHC suggests a mechanism by which both B and T cell homeostasis can be maintained. We provide evidence for the generation of idiotype- and antigen-specific Th and Tc cells upon immunization of syngenic mice with antigen or idiotypic antibody (Ab1) or anti-idiotypic antibody (Ab2). The selective activation and proliferation of the antigen-specific Th and Tc cells mediated by idiotypic stimulation observed in these experiments suggests a B-cell-driven mechanism for the maintenance of antigen-specific T cell memory in the absence of antigenic stimulation, under certain conditions.  相似文献   

3.
Level and persistence of antigenic peptides presented by APCs on MHC class I (MHC-I) molecules influence the magnitude and quality of the ensuing CTL response. We recently demonstrated the unique immunological properties conferred on APCs by expressing beta2-microglobulin (beta2m) as an integral membrane protein. In this study, we explored membrane-anchored beta2m as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. We expressed in mouse RMA-S cells two H-2Kb binding peptides from MO5, OVA257-264, and TRP-2181-188, each genetically fused with the N terminus of membranal beta2m via a short linker. Specific Ab staining and T cell hybridoma activation confirmed that OVA257-264 was properly situated in the MHC-I binding groove. In vivo, transfectants expressing both peptides elicited stronger CTLs and conferred better protection against MO5 than peptide-saturated RMA-S cells. Cells expressing OVA257-264/beta2m were significantly superior to OVA257-264-charged cells in their ability to inhibit the growth of pre-established MO5 tumors. Our results highlight the immunotherapeutic potential of membranal beta2m as a universal scaffold for optimizing Ag presentation by MHC-I molecules.  相似文献   

4.
The ability of activated T cells to present foreign antigens through the MHC class II pathway has been shown in the case of human, rat and mouse T cells. In the present study, the ability of activated T cells to present their endogenous TCR in association with MHC class II molecules to CD4+ T cells was shown. Upon activation mouse T cells downregulate their surface TCR, which are degraded into peptides in endosomal/lysosomal compartments. The idiopeptides (peptides derived from the variable region of the TCR) are presented to cognate anti-idiotypic CD4+ T cells, resulting in activation and proliferation of these cells. Interaction of idiotypic and anti-idiotypic T cells brought about by presentation of TCR idiopeptide may have important implications for T-cell vaccination and perpetuation of T-cell memory not requiring persisting antigen or long-lived memory cells.  相似文献   

5.
Monoclonal antibody (MAb) 6A.C3 neutralizes transmissible gastroenteritis coronavirus (TGEV) and is specific for a conserved epitope within subsite Ac of the spike (S) glycoprotein of TGEV. Six hybridomas secreting anti-idiotypic (Ab2) MAbs specific for MAb 6A.C3 (Ab1) have been selected. All six MAbs inhibited the binding of Ab1 to TGEV and specifically cross-linked MAb1-6A.C3. Four of these hybridomas secreted gamma-type anti-idiotypic MAbs. The other two Ab2s (MAbs 9A.G3 and 9C.E11) were recognized by TGEV-specific antiserum induced in two species. This binding was inhibited by viruses of the TGEV group but not by serologically unrelated coronaviruses. These results indicate that MAb2-9A.G3 and MAb2-9C.E11 mimic an antigenic determinant present on the TGEV surface, and they were classified as beta-type ("internal-image") MAbs. TGEV-binding Ab3 antiserum was induced in 100% of mice immunized with the two beta-type MAb2s and in 25 to 50% of mice immunized with gamma-type MAb2. Both beta- and gamma-type Ab2s induced neutralizing Ab3 antibodies in mice that were mainly directed to antigenic subsite Ac of the S protein.  相似文献   

6.
Summary The anti-idiotypic antibody (Ab2) prepared against the anti-BCG monoclonal antibody (mAb) (Ab1) exhibited potential vaccine activity against Meth A fibrosarcoma that shared a common antigen(s) withMycobacterium bovis strain bacillus Calmette Guèrin (BCG). Mice vaccinated with the anti-idiotypic antibody (Ab2) were protected significantly against growth of the transplanted Meth A tumor (66%), and the presence of anti-(anti-idiotypic antibody) (Ab3) was proved in the Ab2-vaccinated mice by enzyme-linked immunosorbent assay and indirect immunofluorescence analyses using unabsorbed or absorbed sera against the BCG antigen(s) and Meth A tumor cells. This indicated that the anti-idiotypic antibody (Ab2) mimicked the structures of the BCG antigen(s) and behaved as the BCG antigen(s) to induce the Abl-like antibody (Ab3) in vivo. Presumably the Ab2-induced Ab3 plays a significant role in preventing growth of the transplanted tumor in animals. By contrast, the control mice treated with normal mouse serum failed to inhibit the tumor growth. These results suggest the possible development of a tumor vaccine from the anti-idiotypic antibody (Ab2) prepared against the anti-BCG monoclonal antibody, for tumors sharing a common antigen(s) withMycobacterium bovis strain BCG.
Idiotype vaccine for tumor by anti-idiotypic antibody prepared against anti-(bacillus Calmette Guèrin)BCG monoclonal antibody
  相似文献   

7.
Anti-idiotypic antibody mimics proteolytic function of parent antigen   总被引:1,自引:0,他引:1  
Functional imaging of subtilisin Carlsberg active center by the idiotypic network yielded a catalytic anti-idiotypic antibody with endopeptidase, amidase, and esterase activities. A monoclonal antibody inhibitory to subtilisin (Ab1 5-H4) was employed as the template for guiding the idiotypic network to produce the catalytic anti-idiotypic Ab2 6B8-E12. Proteolytic activity of 6B8-E12 was demonstrated by zymography using self-quenched fluorescein-BSA conjugate and in a coupled assay detecting Ab2-dependent RNase A inactivation. Cleavage of peptide substrates by 6B8-E12 revealed distinct patterns of hydrolysis with high preference for aromatic residues before or after the scissile bond. Catalytic activity of Ab2 was inhibited by phenylmethylsulfonyl fluoride, a mechanism-based inhibitor of serine hydrolases. 5-H4 and 6B8-E12 were cloned, produced in Escherichia coli as single-chain variable fragments (scFvs), and purified. Kinetic parameters for amidolytic and esterolytic activities were similar in Ab2 and its scFv derivative. Although the antigen-specific portion of 6B8-E12 possesses no primary structure similarity to subtilisin, it mimics proteolytic and amidolytic functions of the parental antigen, albeit with 4 orders of magnitude slower acceleration rates. The lack of detectable endopeptidase activity of 6B8-E12 scFv raises interesting issues concerning general evolution of catalytic activity. The in silico 3D models of Ab1 and Ab2 revealed strong structural similarity to known anti-protease antibodies and to abzymes, respectively. These results indicate that the idiotypic network is capable, to a significant extent, of reproducing catalytic apparatus of serine proteases and further validate the use of imaging of enzyme active centers by the immune system for induction of abzymes accelerating energy-demanding amide bond hydrolysis.  相似文献   

8.
The use of anti-idiotypic antibodies as immunogens represents one potential approach to active specific immunotherapy of cancer. Two panels of syngeneic monoclonal anti-idiotypic antibodies were generated. One panel was directed against mAb CC49 and the other to mAb COL-1. mAb CC49 recognizes the pancarcinoma antigen (Ag), tumor-associated glycoprotein-72 (TAG-72), and mAb COL-1 recognizes carcinoembryonic antigen (CEA). Seven anti-idiotypic (AI) antibodies (Ab2) designated AI49-1–7 were generated that recognize the variable region of mAb CC49. These mAb were shown to inhibit the interaction of mAb CC49 (Ab1) with TAG-72 (Ag). Five anti-idiotypic antibodies designated CAI-1–5 were also generated to the anti-CEA mAb, COL-1 (Ab1). These Ab2 were shown to inhibit the interaction between COL-1 (Ab1) and CEA (Ag). Immunization of mice, rats, and rabbits with Ab2 directed against CC49 or COL-1 could not elicit specific Ab3 humoral immune responses, i.e., antibody selectively reactive with their respective target antigens. However, immunization of mice with the CC49 anti-idiotypic antibody (Ab2), designated AI49-3, could induce a delayed-type hypersensitivity response (DTH) specific for tumor cells that express TAG-72. Similarly, immunization of mice with an anti-idiotypic antibody directed against COL-1, designated CAI-1, could induce specific DTH cell-mediated immune responses to murine tumor cells that express human CEA on their surface. These results thus demonstrate that while some anti-idiotype mAb may not be potent immunogens in eliciting Ab3 humoral responses, they are capable of eliciting specific cellular immune responses against human carcinoma-associated antigens. This type of mAb may ultimately be useful in active immunotherapy protocols for human carcinoma.Some of the studies described in this paper were in partial fulfillment of requirements for the completion of Dr. Irvine's dissertation at the George Washington University  相似文献   

9.
In this study, we compared the immunogenicity and tumor-protective activity of anti-idiotypic antibodies mimicking a single tumor-associated epitope and tumor-associated antigen expressing multiple potentially immunogenic epitopes. We focused our study on the colorectal-carcinoma(CRC)-associated antigen GA733 (also known as CO17-1A/KS1-4/KSA/EpCAM). Monoclonal anti-idiotypic antibody (Ab2) BR3E4 was produced against murine anti-CRC mAb CO17-1A (Ab1) in rats. Full-length native GA733 protein was isolated from human tumor cells, and the extracellular domain protein (GA733-2E) was isolated from supernatants of recombinant baculovirus-infected insect cells by immunoafffinity chromatography. The immunomodulatory activity of the Ab2 was compared with that of the antigen, both in rabbits and in mice. Mice, like humans but not rabbits, express a GA733 antigen homologue on some of their normal tissues. Thus, these in vivo models allow the comparison of the immunogenicity of Ab2 and antigen in the presence (mice) and absence (rabbits) of normal tissue expression and immunological tolerance of the GA733 antigen homologue. In rabbits, aluminum-hydroxide(alum)-precipitated native GA733 antigen was superior to alum-precipitated Ab2 in inducing specific humoral immunity. In mice, alum-precipitated recombinant GA733-2E antigen, but not alum-precipitated Ab2, induced specific humoral immunity. However, when the Ab2 was administered to mice in Freund's complete adjuvant, specific humoral immune responses were elicited. Ab2 in complete Freund's adjuvant and GA733-2E in alum were compared for their capacity to induce antigen-specific cellular immunity in mice. Whereas lymphoproliferative responses were obtained with the recombinant antigen only, delayed-type hypersensitivity responses were obtained with both recombinant antigen and Ab2, although these responses were lower than after antigen immunization. The recombinant antigen in alum did not protect mice against challenge with antigen-positive syngeneic murine CRC cells. Similar studies with Ab2 BR3E4 mimicking the CO17-1A epitope were not possible because the tumor cells do not express this epitope after transfection with the human GA733-2 cDNA. However, similar studies with Ab2 mimicking the epitope defined by mAb GA733, which is expressed by the transfected tumor cells, indicated a lack of tumor-protective activity of this Ab2. In contrast, the full-length antigen expressed by recombinant adenovirus inhibited the growth of established tumors in mice. In conclusion, soluble antigen is a more potent modulator of humoral and cellular immune responses than Ab2, both administered in adjuvant. However, for induction of protective immunity, the immunogenicity of the antigen must be further enhanced, e.g., by expression of the antigen in a viral vector. Received: 27 December 1999 / Accepted: 27 January 2000  相似文献   

10.
Neuroblastoma treatment with chimeric antidisialoganglioside GD2 Ab ch14.18 showed objective antitumor responses. Production of anti-idiotypic Abs (Ab2) against ch14.18 (Ab1) in some cases was positively correlated with a more favorable prognosis. According to Jerne's network theory, a subset of anti-idiotypic Abs (Ab2beta) carries an "internal image" of the Ag and induces Abs (Ab3) against the original Ag. The molecular origin of an anti-idiotypic Ab response in tumor patients was not investigated previously. To clone anti-idiotypic Abs, B cells of a ch14.18-treated neuroblastoma patient with Ab2 serum reactivity were used to construct Ab phage display libraries. After repeated biopannings on ch14.18 and its murine relative, anti-GD2 mAb 14G2a, we selected 40 highly specific clones. Sequence analysis revealed at least 10 of 40 clones with different Ig genes. Identities to putative germline genes ranged between 94.90 and 100% for V(H) and between 93.90 and 99.60% for V(L). An overall high rate of replacement mutations suggested a strong Ag-driven maturation of the anti-idiotypic Abs. Two clones that were analyzed further, GK2 and GK8, inhibited binding of ch14.18 to GD2 just as the patient's serum did. GK8 alone inhibited >80% of the patient's anti-idiotypic serum Abs in binding to ch14.18. Rabbits vaccinated with GK8 or GK2 (weaker) produced Ab3 against the original target Ag GD2. GK8 may be useful as a tumor vaccine for GD2-positive [corrected] tumors.  相似文献   

11.
These investigations are centered on the development of anti-idiotypic and anti-anti-idiotypic antibodies to a structurally defined carbohydrate Ag, 3-O-alpha-L-fucopyranosyl-beta-D-galactopyranoside (Fuc alpha 1----3Gal). Biologic association of this disaccharide Ag structure had previously been found with tissues from areas of benign and malignant disease of the colon and breast. The exquisite specificity of binding of the original Ab1, with the antibody-Ag reaction requiring both fucose and galactose and the alpha-anomeric 1----3 linkage, was repeated with the anti-anti-idiotypic antibodies. This information indicates that although antigenic mimicry of anti-idiotypic for Ag is accomplished using amino acids in place of sugars, the specificity pattern can be precisely reproduced.  相似文献   

12.
A subpopulation of rabbit polyclonal anti-idiotypic antibody (anti-Id) was previously produced to a murine monoclonal antibody (mAb) (M1875) specific for the bluetongue virus core protein VP7. In this report, mimicry of VP7 by this anti-Id (designated RAb2-A) was functionally analyzed through immunization of Balb/c mice with RAb2-A or purified VP7. Animals immunized with RAb2-A were able to produce an M1875-like Ab3 antibody response with idiotype and epitope specificity resembling that of M1875 without subsequent exposure to the nominal antigen. This conclusion was supported by experiments showing that the RAb2-A-induced Ab3 antibodies (i) reacted specifically with the immunizing anti-Id; (ii) were capable of binding VP7; (iii) inhibited M1875 from binding to VP7; and (iv) inhibited M1875 from binding to RAb2-A. Similarly, mice immunized with purified VP7 also produced antibodies that exhibited characteristics such as idiotype and epitope specificity in common with M1875. No antibody response to VP7 was detected in control groups of mice immunized with either normal rabbit IgG or BHK-21 cell components. Therefore, it can be concluded that rabbit anti-Id RAb2-A mimics an M1875-defined VP7 epitope sufficiently to function as a surrogate antigen for inducing an anti-bluetongue virus response.  相似文献   

13.
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.  相似文献   

14.
To study the role of idiotypic anti-idiotypic interactions in schistosomiasis, mice were immunized with a mAb, E.1, which bound to soluble egg and larval stage Ag and also passively transferred resistance to cercarial challenge in mice. Subsequently, hybridomas were produced from E.1 immunized mice and tested for the ability to inhibit E.1 binding to soluble egg Ag. The results showed that anti-idiotypic mAb (Ab2) were produced. The range of inhibitory activity was from 33 to 100%. By using a direct Ab2 binding assay, the Ab2 were shown to be idiotypic specific, not isotype specific. It was also found that six of the hybridomas bound to soluble egg Ag and were therefore anti-anti-idiotypic antibodies (Ab3). Ab3 were shown to be inhibited from binding to soluble egg Ag by Ab2. To the authors' knowledge, this is the first time that an in vivo network relevant to an infectious organism has been reproduced in vitro such that both Ab2 and Ab3 were produced from the same animals independent of exposure to parasite Ag.  相似文献   

15.
The concept of idiotype vaccines against tumor-associated antigens (TAA) was tested in the DBA/2 L1210 lymphoma subline, L1210/GZL. Monoclonal antibodies against a TAA that cross-reacts with the envelope glycoprotein gp52 of the mammary tumor virus were used to make hybridoma anti-idiotype antibodies (Ab2). In this report we describe the characterization of monoclonal anti-idiotypic antibodies against the combining site of 11C1 (Ab1), which recognizes a shared determinant of gp52 of mouse mammary tumor virus (MMTV) and the TAA of L1210/GZL. Hybridomas expressing the internal image of gp52 were screened by an idiotype inhibition assay. Mice sensitized with radiated L1210/GZL cells produced specific delayed type hypersensitivity (DTH) against the Ab2 hybridoma. Five Ab2 hybridomas were selected and were used to immunize DBA/2 mice. Such immunized animals showed specific DTH reaction against a challenge with the L1210/GZL tumor cells. Similar results were obtained in mice immunized with purified Ab2. Fluorescence-activated cell sorter analysis demonstrated that fluorescence staining of L1210/GZL cells by 11C1 can be completely inhibited with preabsorption on Ab2 hybridoma cells. Mice immunized with 2F10 and 3A4 coupled to keyhole limpet hemocyanin (KLH) contained antibodies binding to MMTV. But only in mice immunized with 2F10-KLH was significant inhibition of L1210/GZL tumor growth observed. Collectively, these results indicate that certain anti-idiotypic antibodies can mimic the MMTV gp52 antigen, as well as the gp52-like epitope expressed on the L1210/GZL tumor cells. These properties of anti-idiotypic antibodies mimicking TAA could be exploited for making idiotype vaccines against tumors.  相似文献   

16.
We previously described the isolation and characterization of a human monoclonal anti-idiotypic antibody (Ab2) isolated from EBV-transformed human PBL after immunization with rabies vaccine. The present study concerns the molecular characteristics of the Ab2 and the germ-line elements that gave rise to it. The H chain of this antibody derives from the small VHV family of human V region gene segments. Parallel studies on the germ-line VHV gene isolated from the same individual revealed that the expressed molecule contains 19 nucleotide differences in the VH gene segment. The D segment of Ab2 could have arisen by a D to D fusion; the J segment is a JH6. Extensive somatic variation evident in the H chain variable region of this naturally arising monoclonal anti-idiotypic antibody suggests that this Ab2, the product of a CD5+ B cells, was the consequence of an Ag-driven immune response.  相似文献   

17.
The structural-functional aspects of the tubulin binding domain on the microtubule-associated protein MAP-2, and its relationship with the tubulin binding domain on tau, were studied using anti-idiotypic antibodies that react specifically with the epitope(s) on MAPs involved in their interaction with tubulin in addition to other tau and MAP-2 specific antibodies. Previous studies showed that MAP-2 and tau share common binding sites on tubulin defined by the peptide sequences alpha (430-441) and beta (422-434) of tubulin subunits. Furthermore, binding experiments revealed the existence of multiple sites for the interaction of the alpha- and beta-tubulin peptides with MAP-2 and tau. Most recent studies showed that the synthetic tau peptide Val187-Gly204 (VRSKIGSTENLKHQPGGG) from the repetitive sequence on tau defines a tubulin binding site on tau. Our present immunological studies using anti-idiotypic antibodies which interact with the synthetic tau peptide and antibodies against the Val187-Gly204 tau peptide indicate that MAP-2 and tau share common antigenic determinants at the level of their respective tubulin binding domains. These antigenic determinants appear to be present in the 35 kDa tubulin binding fragment of MAP-2 and in 18-20 kDa chymotryptic fragments containing the tubulin binding site(s) on MAP-2. These findings, along with structural information on these proteins, provide strong evidence in favor of the hypothesis that tubulin binding domains on MAP-2 and tau share similar structural features.  相似文献   

18.
Gangliosides are potentially useful targets for tumor destruction by antibodies. However, the role of gangliosides in T cell-mediated immunity to tumors is unclear. We produced three murine monoclonal anti-idiotypic antibodies (Ab2) against a monoclonal antibody (Ab1) that binds strongly to melanoma-associated GD2 ganglioside and weakly to GD3 ganglioside. All three Ab2 induced anti-anti-idiotypic antibodies (Ab3) with Ab1-like binding specificity to tumor cells and antigen in rabbits. The Ab3 specifically bound to GD2(+) tumor cells and isolated GD2, and shared idiotopes with the Ab1. Two of the three Ab2 induced GD2-specific delayed-type hypersensitivity responses in BALB/c and C57BL/6 mice, but not in C57BL/6/CD4(-/-) mice. Peripheral blood mononuclear cells (PBMC) from a melanoma patient proliferated specifically in response to in vitro stimulation with Ab2. Proliferation was accompanied by Th1-type cytokine production. Our studies demonstrate the induction of ganglioside-specific T cell-dependent immunity by Ab2 in mice. These T cells showed specific reactivity to ganglioside expressed by tumor cells.  相似文献   

19.
Three groups of anti-idiotypic antibodies (anti-Id or Ab2), designated RAb2-A, RAb2-B1, and RAb2-B2, were isolated from rabbit antiserum raised against three monoclonal antibodies (mAbs) (M1875, M1877, and M1886) specific for the bluetongue virus core protein, VP7. RAb2-A was specific for the idiotype of M1875. RAb2-B1 and RAb2-B2, isolated through the M1877 and M1886 affinity columns, respectively, were directed against the common idiotype that is shared by M1877 and M1886 and therefore classified in the same population (RAb2-B). Further characterization revealed that the two anti-Id populations, RAb2-A and RAb2-B, were significantly different. RAb2-A was an Ab2β type of anti-Id since (i) its reaction with M1875 was inhibited by the antigen; (ii) it inhibited the M1875-VP7 interaction; and (iii) it elicited anti-VP7 antibody response in Balb/c mice. In contrast, RAb2-B may represent an Ab2α type of anti-Id since its reactions with M1877 or M1886 were not inhibited by the antigen, even though it inhibited mAbs from binding to the antigen. These results indicated that RAb2-A and RAb2-B represent two distinct populations of anti-Ids to anti-VP7 mAbs with similar epitope specificity.  相似文献   

20.
Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号