首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid-β (Aβ) proteins, which consist of 42 amino acids (Aβ1–42), are the major constituent of neuritic plaques that form in the brains of senile patients with Alzheimer’s disease (AD). Several reports state that three aspartic acid (Asp) residues at positions 1, 7, and 23 in Aβ1–42 in the plaques of patients with AD are highly isomerized from the l- to d-form. Using biophysical experiments, the present study shows that simultaneous d-isomerization of Asp residues at positions 7 and 23 (d-Asp7,23) enhances oligomerization, fibril formation, and neurotoxic effect of Aβ1–42. In addition, d-isomerization of Asp at position 1 (d-Asp1) suppresses malignant effects induced by d-Asp7,23 of Aβ1–42. These results provide fundamental information to elucidate molecular mechanisms of AD pathogenesis and to develop potent inhibitors of amyloid aggregates and Aβ neurotoxicity.  相似文献   

2.
Aggregation of the 42-mer amyloid β peptide (Aβ42) plays a pivotal role in the pathogenesis of Alzheimer’s disease. Recent investigations suggested the isomerization and/or racemization of Asp at position 1, 7, or 23 to be associated with the pathological role of Aβ42. Our previous study indicated that the turn at positions 22 and 23 of Aβ42 is closely related to its neurotoxicity through the formation of radicals. To clarify the contribution of these modifications at Asp23 to the pathology, three isomerized and/or racemized Aβ42 mutants were prepared. l-isoAsp23- and d-Asp23-Aβ42 showed moderate aggregative ability similar to the wild type. However, d-Asp23-Aβ42 was less neurotoxic than the wild type, while l-isoAsp23-Aβ42 was as toxic as the wild type. In contrast, d-isoAsp23-Aβ42 showed weak aggregative ability without neurotoxicity. These results suggest the isomerization and/or racemization of Asp23 not to be related to the pathogenesis, but to be a consequence of chemical reactions during the long-term deposition of fibrils.  相似文献   

3.
1-40 and Aβ1-42 have been shown to be the main components of the amyloid plaques found in the extracellular environment of neurons in Alzheimer’s disease. β-Casein, a milk protein, has been shown to display a remarkable chaperone ability in preventing the aggregation of proteins. In this study, the ability of β-casein to suppress the amyloid fibril formation of Aβ1-42 has been examined through in vitro studies and molecular docking simulation. The results demonstrate the inhibitory effect of β-casein on fibril formation in Aβ1-42, in a concentration dependent manner, suggesting that the chaperone binds to the Aβ1-42 and prevents amyloid fibril formation. Molecular docking results show that the inhibitory effect of the β-casein may be due to binding of the chaperone with the aggregation-prone region of the Aβ1-42 mainly via hydrophobic interactions. β-Casein probably binds to the CHC and C-terminal domain of the Aβ1-42, and stabilizes proteins by inhibiting the conversion of monomeric Aβ1-42 into fibrils. Thus our data suggests that the hydrophobic interactions between β-casein and Aβ1-42 play an important role in the burial of the hydrophobic part of the Aβ1-42. This means that β-casein maybe considered for use in preventing amyloid fibril formation in degenerative diseases such as Alzheimer.  相似文献   

4.
Aggregation of amyloid-β (Aβ) peptide, a 39- to 43-residue fragment of the amyloid precursor protein, is associated with Alzheimer's disease, the most common form of dementia in the elderly population. Several experimental studies have tried to characterize the atomic details of amyloid fibrils, which are the final product of Aβ aggregation. Much less is known about species forming during the early stages of aggregation, in particular about the monomeric state of the Aβ peptide that may be viewed as the product of the very first step in the hypothesized amyloid cascade. Here, the equilibrium ensembles of monomeric Aβ alloforms Aβ1-40 and Aβ1-42 are investigated by Monte Carlo simulations using an atomistic force field and implicit solvent model that have been shown previously to correctly reproduce the ensemble properties of other intrinsically disordered polypeptides.Our simulation results indicate that at physiological temperatures, both alloforms of Aβ assume a largely collapsed globular structure. Conformations feature a fluid hydrophobic core formed, on average, by contacts both within and between the two segments comprising residues 12-21 and 24-40/42, respectively. Furthermore, the 11 N-terminal residues are completely unstructured, and all charged side chains, in particular those of Glu22 and Asp23, remain exposed to solvent. Taken together, these observations indicate a micelle-like† architecture at the monomer level whose implications for oligomerization, as well as fibril formation and elongation, are discussed. We establish quantitatively the intrinsic disorder of Aβ and find the propensity to form regular secondary structure to be low but sequence specific. In the presence of a global and unspecific bias for backbone conformations to populate the β-basin, the β-sheet propensity along the sequence is consistent with the arrangement of the monomer within the fibril, as derived from solid-state NMR data. These observations indicate that the primary sequence partially encodes fibril structure, but that fibril elongation must be thought of as a templated assembly step.  相似文献   

5.
Amyloid is a highly ordered form of aggregate comprising long, straight and unbranched proteinaceous fibrils that are formed with characteristic nucleation-dependent kinetics in vitro. Currently, the structural molecular mechanism of fibril nucleation and elongation is poorly understood. Here, we investigate the role of the sequence and structure of the initial monomeric precursor in determining the rates of nucleation and elongation of human β2-microglobulin (β2m). We describe the kinetics of seeded and spontaneous (unseeded) fibril growth of wild-type β2m and 12 variants at pH 2.5, targeting specifically an aromatic-rich region of the polypeptide chain (residues 62-70) that has been predicted to be highly amyloidogenic. The results reveal the importance of aromatic residues in this part of the β2m sequence in fibril formation under the conditions explored and show that this region of the polypeptide chain is involved in both the nucleation and the elongation phases of fibril formation. Structural analysis of the conformational properties of the unfolded monomer for each variant using NMR relaxation methods revealed that all variants contain significant non-random structure involving two hydrophobic clusters comprising regions 29-51 and 58-79, the extent of which is critically dependent on the sequence. No direct correlation was observed, however, between the extent of non-random structure in the unfolded state and the rates of fibril nucleation and elongation, suggesting that the early stages of aggregation involve significant conformational changes from the initial unfolded state. Together, the data suggest a model for β2m amyloid formation in which structurally specific interactions involving the highly hydrophobic and aromatic-rich region comprising residues 62-70 provide a complementary interface that is key to the generation of amyloid fibrils for this protein at acidic pH.  相似文献   

6.
Amyloid deposits are pathological hallmarks of various neurodegenerative diseases including Alzheimer's disease (AD), where amyloid β-peptide (Aβ) polymerizes into amyloid fibrils by a nucleation-dependent polymerization mechanism. The biological membranes or other interfaces as well as the convection of the extracellular fluids in the brain may influence Aβ amyloid fibril formation in vivo. Here, we examined the polymerization kinetics of 2.5, 5, 10 and 20 μM Aβ in the presence or absence of air–water interface (AWI) using fluorescence spectroscopy and fluorescence microscopy with the amyloid specific dye, thioflavin T. When the solutions were incubated with AWI and in quiescence, amyloid fibril formation was observed at all Aβ concentrations examined. In contrast, when incubated without AWI, amyloid fibril formation was observed only at higher Aβ concentrations (10 and 20 μM). Importantly, when the 5 μM Aβ solution was incubated with AWI, a ThT-reactive film was first observed at AWI without any other ThT-reactive aggregates in the bulk. When 5 μM Aβ solutions were voltexed or rotated with AWI, amyloid fibril formation was considerably accelerated, where a ThT-reactive film was first observed at AWI before ThT-reactive aggregates were observed throughout the mixture. When 5 μM Aβ solutions containing a polypropylene disc were rotated without AWI, amyloid fibril formation was also considerably accelerated, where fine ThT-reactive aggregates were first found attached at the edge of the disc. These results indicate the critical roles of interfaces and agitation for amyloid fibril formation. Furthermore, elimination of AWI may be essential for proper evaluation of the roles of various biological molecules in the amyloid formation studies in vitro.  相似文献   

7.
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.  相似文献   

8.
Amyloid fibrils are ordered polymers in which constituent polypeptides adopt a non-native fold. Despite their importance in degenerative human diseases, the overall structure of amyloid fibrils remains unknown. High-resolution studies of model peptide assemblies have identified residues forming cross-β-strands and have revealed some details of local β-strand packing. However, little is known about the assembly contacts that define the fibril architecture. Here we present a set of three-dimensional structures of amyloid fibrils formed from full-length β2-microglobulin, a 99-residue protein involved in clinical amyloidosis. Our cryo-electron microscopy maps reveal a hierarchical fibril structure built from tetrameric units of globular density, with at least three different subunit interfaces in this homopolymeric assembly. These findings suggest a more complex superstructure for amyloid than hitherto suspected and prompt a re-evaluation of the defining features of the amyloid fold.  相似文献   

9.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

10.
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (FC≡N) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by FC≡N. The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. FC≡N fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and FC≡N fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until β-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. FC≡N also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. FC≡N is readily accommodated into proteins; thus, the approach should be broadly applicable.  相似文献   

11.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

12.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   

13.
Amyloid Abeta1-42 peptide (Abeta1-42) and its isomers with an isoaspartyl residue at position 7 or 23 [Abeta1-42(isoAsp7) and Abeta1-42(isoAsp23)] were synthesized in high purity by the Fmoc-solid phase technique, followed by HPLC on a silica-based reversed-phase column under the basic conditions. Importantly, Abeta1-42(isoAsp23) aggregated more strongly than native Abeta1-42 and showed significant neurotoxicity, while the aggregation ability and neurotoxicity of Abeta1-42(isoAsp7) was weak. This suggests that the isomerization of the aspartyl residues plays an important role in fibril formation in Alzheimer's disease.  相似文献   

14.
Abstract: Perlecan is a specific heparan sulfate proteoglycan that accumulates in the fibrillar β-amyloid (Aβ) deposits of Alzheimer's disease. Perlecan purified from the Engelbreth-Holm-Swarm tumor was used to define perlecan's interactions with Aβ and its effects on Aβ fibril formation. Using a solid-phase binding immunoassay, freshly solubilized full-length Aβ peptides bound immobilized perlecan at two sites, representing both high-affinity [KD = ~5.8 × 10?11M for Aβ (1–40); KD = ~6.5 × 10?12M for Aβ (1–42)] and lower-affinity [KD = 3.5 × 10?8M for Aβ (1–40); KD = 4.3 × 10?8M for Aβ (1–42)] interactions. An increase in the binding capacity of Aβ (1–40) to perlecan correlated with an increase in Aβ amyloid fibril formation during a 1-week incubation period. The high-capacity binding of Aβ (1–40) to perlecan was similarly observed using perlecan heparan sulfate glycosaminoglycans and was completely abolished by heparin, but not by chondroitin-4-sulfate. Using a thioflavin T fluorometry assay, perlecan accelerated the rate of Aβ (1–40) amyloid fibril formation, causing a significant increase in Aβ fibril assembly over a 2-week incubation period at 1 h (2.8-fold increase), 1 day (3.6-fold increase), and 3 days (2.8-fold increase) in comparison with Aβ (1–40) alone. Perlecan also initially accelerated the formation of Aβ (1–42) fibrils within 1 h and maintained significantly higher levels of Aβ (1–42) thioflavin T fluorescence throughout a 2-week experimental period in comparison with Aβ (1–42) alone, suggesting perlecan's ability to maintain amyloid fibril stability. Perlecan's effects on Aβ (1–40) fibril formation and maintenance of Aβ (1–42) fibril stability occurred in a dose-dependent manner and was also mediated primarily by perlecan's glycosaminoglycan chains. Perlecan was the most effective enhancer and accelerator of Aβ fibril formation when compared directly with other amyloid plaque components, including apolipoprotein E, α1-antichymotrypsin, P component, C1q, and C3. This study, therefore, demonstrates that perlecan not only binds to the predominant isoforms of Aβ, but also accelerates Aβ fibril formation and stabilizes amyloid fibrils once formed, confirming pivotal roles for perlecan in the pathogenesis of Aβ amyloidosis in Alzheimer's disease.  相似文献   

15.
In the future, humans may live in space because of global pollution and weather fluctuations. In microgravity, convection does not occur, which may change the amyloidogenicity of proteins. However, the effect of gravity on amyloid fibril formation is unclear and remains to be elucidated. Here, we analyzed the effect of microgravity on amyloid fibril formation of amyloidogenic proteins including insulin, amyloid β42 (Aβ42), and transthyretin (TTR). We produced microgravity (10?3 g) by using the gravity controller Gravite. Human insulin, Aβ42, and human wild-type TTR (TTRwt) were incubated at pH 3.0, 7.0, and 3.5 at 37 °C, respectively, in 1 g on the ground or in microgravity. We measured amyloidogenicity via the thioflavin T (ThT) method and cell-based 1-fluoro-2,5-bis[(E)-3-carboxy-4-hydroxystyryl]benzene (FSB) assay. ThT fluorescence intensity and cell-based FSB assay results for human insulin samples were decreased in microgravity compared with results in 1 g. Aβ42 samples did not differ in ThT fluorescence intensity in microgravity and in 1 g on the ground. However, in the cell-based FSB assay, the staining intensity was reduced in microgravity compared with that on 1 g. Human TTRwt tended to form fewer amyloid fibrils in ThT fluorescence intensity and cell-based FSB assays in microgravity than in 1 g. Human insulin and Aβ42 showed decreased amyloid fibril formation in microgravity compared with that in 1 g. Human TTRwt tended to form fewer amyloid fibrils in microgravity. Our experiments suggest that the earth's gravity may be an accelerating factor for amyloid fibril formation.  相似文献   

16.
Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26-42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’).  相似文献   

17.
There have been many reports suggesting that soluble oligomers of amyloid β (Aβ) are neurotoxins causing Alzheimer’s disease (AD). Although inhibition of the soluble oligomerization of Aβ is considered to be effective in the treatment of AD, almost all peptide inhibitors have been designed from the β-sheet structure (H14-D23) of Aβ1-42. To obtain more potent peptides than the known inhibitors of the soluble-oligomer formation of Aβ1-42, we performed random screening by phage display. After fifth-round panning of a hepta-peptide library against soluble Aβ1-42, novel peptides containing arginine residues were enriched. These peptides were found to suppress specifically 37/48 kDa oligomer formation and to keep the monomeric form of Aβ1-42 even after 24 h of incubation, as disclosed by SDS–PAGE and size-exclusion chromatography. Thus we succeeded in acquiring novel efficient peptides for inhibition of soluble 37/48 kDa oligomer formation of Aβ1-42.  相似文献   

18.
《朊病毒》2013,7(2):52-55
Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis1, 2. At each fibril end, β-sheets provide a template for recruiting and converting monomers3. Various amyloid fibrils often occur in the same individual, yet whether distinct protein aggregates aid or inhibit the assembly of heterologous proteins is unclear. In prion disease, different amyloid-like prion aggregate structures, or strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences4-7. Here we focus on the interactions reported to occur when two pre-existing amyloids or two distinct prion strains occur together in the central nervous system.  相似文献   

19.
Amyloid proteins are widespread in nature both as pathological species involved in several diseases and as functional entities that can provide protection and storage for the organism. Lipids have been found in amyloid deposits from various amyloid diseases and have been shown to strongly affect the formation and structure of both pathological and functional amyloid proteins. Here, we investigate how fibrillation of the functional amyloid FapC from Pseudomonas is affected by two lysolipids, the zwitterionic lipid 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine and the anionic lipid 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) (LPG). Small-angle X-ray scattering, circular dichroism, dynamic light scattering, and thioflavin T fluorescence measurements were performed simultaneously on the same sample to ensure reproducibility and allow a multimethod integrated analysis. We found that LPG strongly induces fibrillation around its critical micelle concentration (cmc) by promoting formation of large structures, which mature via accumulation of intermediate fibril structures with a large cross section. At concentrations above its cmc, LPG strongly inhibits fibrillation by locking FapC in a core–shell complex. In contrast, lipid 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine induces fibrillation at concentrations above its cmc, not via strong interactions with FapC but by being incorporated during fibrillation and likely stabilizing the fibrillation nucleus to reduce the lag phase. Finally, we show that LPG is not incorporated into the fibril during assembly but rather can coat the final fibril. We conclude that lipids affect both the mechanism and outcome of fibrillation of functional amyloid, highlighting a role for lipid concentration and composition in the onset and mechanism of fibrillation in vivo.  相似文献   

20.
β2-Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号