首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spermatogonial stem and progenitor cells (SSCs) of the testis represent a classic example of adult mammalian stem cells and preserve fertility for nearly the lifetime of the animal. While the precise mechanisms that govern self-renewal and differentiation in vivo are challenging to study, various systems have been developed previously to propagate murine SSCs in vitro using a combination of specialized culture media and feeder cells1-3.Most in vitro forays into the biology of SSCs have derived cell lines from neonates, possibly due to the difficulty in obtaining adult cell lines4. However, the testis continues to mature up until ~5 weeks of age in most mouse strains. In the early post-natal period, dramatic changes occur in the architecture of the testis and in the biology of both somatic and spermatogenic cells, including alterations in expression levels of numerous stem cell-related genes. Therefore, neonatally-derived SSC lines may not fully recapitulate the biology of adult SSCs that persist after the adult testis has reached a steady state.Several factors have hindered the production of adult SSC lines historically. First, the proportion of functional stem cells may decrease during adulthood, either due to intrinsic or extrinsic factors5,6. Furthermore, as with other adult stem cells, it has been difficult to enrich SSCs sufficiently from total adult testicular cells without using a combination of immunoselection or other sorting strategies7. Commonly employed strategies include the use of cryptorchid mice as a source of donor cells due to a higher ratio of stem cells to other cell types8. Based on the hypothesis that removal of somatic cells from the initial culture disrupts interactions with the stem cell niche that are essential for SSC survival, we previously developed methods to derive adult lines that do not require immunoselection or cryptorchid donors but rather employ serial enrichment of SSCs in culture, referred to hereafter as SESC2,3.The method described below entails a simple procedure for deriving adult SSC lines by dissociating adult donor seminiferous tubules, followed by plating of cells on feeders comprised of a testicular stromal cell line (JK1)3. Through serial passaging, strongly adherent, contaminating non-germ cells are depleted from the culture with concomitant enrichment of SSCs. Cultures produced in this manner contain a mixture of spermatogonia at different stages of differentiation, which contain SSCs, based on long-term self renewal capability. The crux of the SESC method is that it enables SSCs to make the difficult transition from self-renewal in vivo to long-term self-renewal in vitro in a radically different microenvironment, produces long-term SSC lines, free of contaminating somatic cells, and thereby enables subsequent experimental manipulation of SSCs.  相似文献   

3.
肿瘤干细胞研究进展   总被引:2,自引:0,他引:2  
肿瘤干细胞(cancer stem cell, CSC)假说是近年来提出的关于肿瘤发生的新理论,在所有的肿瘤细胞中,可能只有一小部分细胞具有产生肿瘤并维持肿瘤生长和异质性的能力,目前已经在白血病、乳腺癌、脑癌等肿瘤组织中成功分离出了肿瘤干细胞,深入了解肿瘤干细胞的生物学特性、发展相应的鉴别方法以及特殊的治疗手段对癌症的临床治疗有着重要的意义。主要从肿瘤干细胞的概念、起源、鉴定分离方法、与正常干细胞的比较、比率以及与肿瘤转移的关系等方面进行了综述。  相似文献   

4.
Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers means that we can only postulate why we were unable to obtain m-SKPs from the lion and red panda cultures. However the giant panda observations point to the value of archiving cells from rare species, and the possibilities for later progenitor cell derivation.  相似文献   

5.
6.
Identification of genes specifically expressed in stem/progenitor cells is an important issue in developmental and stem cell biology. Genome-wide gene expression analyses in liver cells performed in this study have revealed a strong expression of X-linked genes that include members of the brain-expressed X-linked (Bex) gene family in stem/progenitor cells. Bex family genes are expressed abundantly in the neural cells and have been suggested to play important roles in the development of nervous tissues. However, the physiological role of its individual members and the precise expression pattern outside the nervous system remain largely unknown. Here, we focused on Bex2 and examined its role and expression pattern by generating knock-in mice; the enhanced green fluorescence protein (EGFP) was inserted into the Bex2 locus. Bex2-deficient mice were viable and fertile under laboratory growth conditions showing no obvious phenotypic abnormalities. Through an immunohistochemical analysis and flow cytometry-based approach, we observed unique EGFP reporter expression patterns in endocrine and stem/progenitor cells of the liver, pyloric stomach, and hematopoietic system. Although Bex2 seems to play redundant roles in vivo, these results suggest the significance and potential applications of Bex2 in studies of endocrine and stem/progenitor cells.  相似文献   

7.
8.
Prostate cancer (PCa) stem/progenitor cells are known to have higher chemoresistance than non-stem/progenitor cells, but the underlying molecular mechanism remains unclear. We found the expression of testicular nuclear receptor 4 (TR4) is significantly higher in PCa CD133+ stem/progenitor cells compared with CD133 non-stem/progenitor cells. Knockdown of TR4 levels in the established PCa stem/progenitor cells and the CD133+ population of the C4-2 PCa cell line with lentiviral TR4 siRNA led to increased drug sensitivity to the two commonly used chemotherapeutic drugs, docetaxel and etoposide, judging from significantly reduced IC50 values and increased apoptosis in the TR4 knockdown cells. Mechanism dissection studies found that suppression of TR4 in these stem/progenitor cells led to down-regulation of Oct4 expression, which, in turn, down-regulated the IL-1 receptor antagonist (IL1Ra) expression. Neutralization experiments via adding these molecules into the TR4 knockdown PCa stem/progenitor cells reversed the chemoresistance, suggesting that the TR4-Oct4-IL1Ra axis may play a critical role in the development of chemoresistance in the PCa stem/progenitor cells. Together, these studies suggest that targeting TR4 may alter chemoresistance of PCa stem/progenitor cells, and this finding provides the possibility of targeting TR4 as a new and better approach to overcome the chemoresistance problem in PCa therapeutics.  相似文献   

9.
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.  相似文献   

10.
干细胞是具有自我复制及更新能力的原始不成熟细胞,可向不同组织及器官分化,在胚胎和成体组织中都有存在.干细胞的应用作为组织修复和重建的一种新策略,近几年来受到了医学界和生物学界的广泛关注,而microRNA(miRNA)作为一种长约21~23个核苷酸的内源性非编码RNA的分子,其通过与靶mRNA结合,发挥负向基因转录调控作用的功能已在研究中被证实,其对细胞乃至生物体的影响也渐渐成为研究的热点.但干细胞与miRNA两者之间是否存在联系,miRNA是否在干细胞的分化、增殖中也具一定有作用,已逐渐成为一项值得研究的课题.这不仅可以使我们更加全面的了解miRNA的作用,也为干细胞的应用提供了新的研究途径和理论依据.因此本文就miRNA及其对胚胎干细胞和成体干细胞的调控做一综述.  相似文献   

11.
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.  相似文献   

12.
There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.  相似文献   

13.
Cells exhibit a variety of phenotypes in different stages and diseases. Although several markers for cellular phenotypes have been identified, gene combinations denoting cellular phenotypes have not been completely elucidated. Recent advances in gene analysis have revealed that various gene expression patterns are observed in each cell species and status. In this review, the perspectives of gene combinations in cellular phenotype presentation are discussed. Gene expression profiles change during cellular processes, such as cell proliferation, cell differentiation, and cell death. In addition, epigenetic regulation increases the complexity of the gene expression profile. The role of gene combinations and panels of gene combinations in each cellular condition are also discussed.  相似文献   

14.
Recently, a novel therapeutic treatment for ischemic diseases using angiogenic growth factors to augment collateral artery development has been proposed. As intramuscular injection of naked human hepatocyte growth factor (HGF) plasmid DNA induced therapeutic angiogenesis in several animal test subjects, we have started a clinical trial to treat peripheral arterial disease. However, one might assume that over-expression of angiogenic growth factors could enhance tumor growth. To resolve this issue, we examined the over-expression of HGF in tumor bearing mice. Tumors on their backs were prepared with an intradermal inoculation of A431, human epidermoid cancer cells expressing c-Met. These mice were intramuscularly injected with human HGF plasmid or control plasmid into the femoral muscle. Human HGF concentration was increased only in the femoral muscle, but not in blood. Although recombinant HGF stimulated the growth of A431 cells in vitro, temporally and locally HGF elevation in hindlimb had no effect on tumor growth in mice.  相似文献   

15.
16.
17.
Reversine, a purine analog, had been evidenced that it could induce dedifferentiation of differentiated cells into multipotent progenitor cells. Here, we showed that reversine could increase the plasticity of long-term cryopreserved bovine fibroblasts, and reversine-treated cells achieved the ability to differentiate into all three germ layers cells, such as osteoblasts and adipocytes from mesoblast, neurocyte from ectoderm, hepatocytes and smooth muscle cells from endoderm. Moreover, treatment of reversine caused the grow arrest of fibroblasts at G2/M and distinct cell swelling resulting in the formation of polyploid cells. In parallel, reversine treatment induced a multipotency of fibroblasts might be attributed to the activation of histone modifications, especially the degression of DNA methylation. However, molecular and cellular experiments suggested that reversine treatment enhanced selectively the expression of pluripotent marker gene Oct4 and mesenchymal marker genes CD29, CD44 and CD73, but Sox2 and Nanog were not detected. Taken together, these results clearly demonstrate the ability of reversine to dedifferentiation of long-term cryopreserved somatic cells through activation of pluripotent gene Oct4.  相似文献   

18.
Hydrocephalus is the most common developmental disability and leading cause of brain surgery for children. Current treatments are limited to surgical intervention, as the factors that contribute to the initiation of hydrocephalus are poorly understood. Here, we describe the development of obstructive hydrocephalus in mice that are null for Wrp (Srgap3). Wrp is highly expressed in the ventricular stem cell niche, and it is a gene required for cytoskeletal organization and is associated with syndromic and psychiatric disorders in humans. During the postnatal period of progenitor cell expansion and ventricular wall remodeling, loss of Wrp results in the abnormal migration of lineage-tagged cells from the ventricular region into the corpus callosum. Within this region, mutant progenitors appear to give rise to abnormal astroglial cells and induce periventricular lesions and hemorrhage that leads to cerebral aqueductal occlusion. These results indicate that periventricular abnormalities arising from abnormal migration from the ventricular niche can be an initiating cause of noncommunicating hydrocephalus.  相似文献   

19.
While recent findings have established that cells derived from the bone marrow can contribute to vasculogenesis in the adult, it is unclear whether an analogous population of cells in the embryo can also contribute to vasculogenesis. Using a retroviral labeling strategy, we demonstrate that circulating blood island-derived cells contribute to the genesis of both extra- and intraembryonic blood vessels in the early quail embryo. This finding establishes that vasculogenesis in the embryo is a composite of two processes: the direct in situ formation of blood vessels from mesodermally derived angioblasts and the incorporation and differentiation of circulating endothelial cell progenitors into forming embryonic blood vessels.  相似文献   

20.
探讨了从肌肉组织植入的人血小板生成素(TPO)基因在小鼠体内的表达规律,以及对造血祖细胞增殖活性的影响.基因在导入后的24小时内就开始转录,先于血小板、血液TPO浓度、及造血祖细胞的变化.所表达的TPO在血液中的聚积可持续4周以上.巨核祖细胞,粒系祖细胞都出现2周左右的增殖增长,长于血小板计数的升高,但红系祖细胞的变化不明显.这些结果显示,基因治疗过程中血小板计数等变化源于TPO的表达及刺激,而在此期间一些调控机制被激活,对血小板形成的平衡发挥作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号