首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1−/− mice, which are known to be a “short-period mutant,” entrained to a shorter period of feeding cycles than did Cry2−/− mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1 −/− mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.  相似文献   

2.
Clock genes Cryptochrome (Cry1) and Cry2 are essential for expression of circadian rhythms in mice under constant darkness (DD). However, circadian rhythms in clock gene Per1 expression or clock protein PER2 are detected in the cultured suprachiasmatic nucleus (SCN) of neonatal Cry1 and Cry2 double deficient (Cry1 -/-/Cry2 -/-) mice. A lack of circadian rhythms in adult Cry1 -/-/Cry2 -/- mice is most likely due to developmentally disorganized cellular coupling of oscillating neurons in the SCN. On the other hand, neonatal rats exposed to constant light (LL) developed a tenable circadian system under prolonged LL which was known to fragment circadian behavioral rhythms. In the present study, Cry1 -/-/Cry2 -/- mice were raised under LL from postnatal day 1 for 7 weeks and subsequently exposed to DD for 3 weeks. Spontaneous movement was monitored continuously after weaning and PER2::LUC was measured in the cultured SCN obtained from mice under prolonged DD. Surprisingly, Chi square periodogram analysis revealed significant circadian rhythms of spontaneous movement in the LL-raised Cry1 -/-/Cry2 -/- mice, but failed to detect the rhythms in Cry1 -/-/Cry2 -/- mice raised under light-dark cycles (LD). By contrast, prolonged LL in adulthood did not rescue the circadian behavioral rhythms in the LD raised Cry1 -/-/Cry2 -/- mice. Visual inspection disclosed two distinct activity components with different periods in behavioral rhythms of the LL-raised Cry1-/-/Cry2-/- mice under DD: one was shorter and the other was longer than 24 hours. The two components repeatedly merged and separated. The patterns resembled the split behavioral rhythms of wild type mice under prolonged LL. In addition, circadian rhythms in PER2::LUC were detected in some of the LL-raised Cry1-/-/Cry2-/- mice under DD. These results indicate that neonatal exposure to LL compensates the CRY double deficiency for the disruption of circadian behavioral rhythms under DD in adulthood.  相似文献   

3.
4.
Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease). However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef) were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN). These results were confirmed in Per2Luciferase knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to cause steatosis, disrupts the core hepatic clock as well as the diurnal rhythms of key lipid metabolism genes.  相似文献   

5.
Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08–6.44 ng mL−1 and the medium inhibition of control (IC50) was 0.73 ng mL−1. It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%–96.6% and with a coefficient of variation (CV) among 2.0%–8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples.  相似文献   

6.
The mammalian circadian system is composed of a light-entrainable central clock in the suprachiasmatic nuclei (SCN) of the brain and peripheral clocks in virtually any other tissue. It allows the organism to optimally adjust metabolic, physiological and behavioral functions to the physiological needs it will have at specific time of the day. According to the resonance theory, such rhythms are only advantageous to an organism when in tune with the environment, which is illustrated by the adverse health effects originating from chronic circadian disruption by jetlag and shift work. Using short-period Cry1 and long-period Cry2 deficient mice as models for morningness and eveningness, respectively, we explored the effect of chronotype on the phase relationship between the central SCN clock and peripheral clocks in other organs. Whereas the behavioral activity patterns and circadian gene expression in the SCN of light-entrained Cry1-/- and Cry2-/- mice largely overlapped with that of wild type mice, expression of clock and clock controlled genes in liver, kidney, small intestine, and skin was shown to be markedly phase-advanced or phase-delayed, respectively. Likewise, circadian rhythms in urinary corticosterone were shown to display a significantly altered phase relationship similar to that of gene expression in peripheral tissues. We show that the daily dissonance between peripheral clocks and the environment did not affect the lifespan of Cry1-/- or Cry2-/- mice. Nonetheless, the phase-shifted peripheral clocks in light-entrained mice with morningness and eveningness-like phenotypes may have implications for personalized preventive and therapeutic (i.e. chronomodulation-based) health care for people with early and late chronotypes.  相似文献   

7.
Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways.  相似文献   

8.
9.
Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.  相似文献   

10.
《Chronobiology international》2013,30(8):1075-1089
Genomic studies suggest an association of circadian clock genes with bipolar disorder (BD) and lithium response in humans. Therefore, we tested mice mutant in various clock genes before and after lithium treatment in the forced swim test (FST), a rodent behavioral test used for evaluation of depressive-like states. We find that expression of circadian clock components, including Per2, Cry1 and Rev-erbα, is affected by lithium treatment, and thus, these clock components may contribute to the beneficial effects of lithium therapy. In particular, we observed that Cry1 is important at specific times of the day to transmit lithium-mediated effects. Interestingly, the pathways involving Per2 and Cry1, which regulate the behavior in the FST and the response to lithium, are distinct as evidenced by the phosphorylation of GSK3β after lithium treatment and the modulation of dopamine levels in the striatum. Furthermore, we observed the co-existence of depressive and mania-like symptoms in Cry1 knock-out mice, which resembles the so-called mixed state seen in BD patients. Taken together our results strengthen the concept that a defective circadian timing system may impact directly or indirectly on mood-related behaviors.  相似文献   

11.
12.

Background

Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype.

Methodology/Principal Findings

We found that Per2Brdm1 mutant mice as well as mice lacking Cry2−/− displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2−/− displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2−/− mutants despite the simultaneous inactivation of Per2.

Conclusions/Significance

This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters.  相似文献   

13.
Gut hormone gastric inhibitory polypeptide (GIP) stimulates insulin secretion from pancreatic β-cells upon ingestion of nutrients. Inhibition of GIP signaling prevents the onset of obesity and consequent insulin resistance induced by high-fat diet. In this study, we investigated the role of GIP in accumulation of triglycerides into adipocytes and in fat oxidation peripherally using insulin receptor substrate (IRS)-1-deficient mice and revealed that IRS-1−/−GIPR−/− mice exhibited both reduced adiposity and ameliorated insulin resistance. Furthermore, increased gene expression of CD36 and UCP2 in liver, and increased expression and enzyme activity of 3-hydroxyacyl-CoA dehydrogenase in skeletal muscle of IRS-1−/−GIPR−/− mice might contribute to the lower respiratory quotient and the higher fat oxidation in light phase. These results suggest that GIP plays a crucial role in switching from fat oxidation to fat accumulation under the diminished insulin action as a potential target for secondary prevention of insulin resistance.  相似文献   

14.
Cyclic ADP-ribose (cADPR), accumulated in pancreatic β-cells in response to elevated ATP levels after glucose stimulation, mobilizes Ca2+ from the endoplasmic reticulum through the ryanodine receptor (RyR) and thereby induces insulin secretion. We have recently demonstrated in an in vitro study that cADPR activates RyR through binding to FK506-binding protein 12.6 (FKBP12.6), an accessory protein of RyR. Here we generated FKBP12.6-deficient (FKBP12.6−/−) mice by homologous recombination. FKBP12.6−/− mice showed glucose intolerance coupled to insufficient insulin secretion upon a glucose challenge. Insulin secretion in response to glucose was markedly impaired in FKBP12.6−/− islets, while sulfonylurea- or KCl-induced insulin secretion was unaffected. No difference was found in the glucose oxidation rate between FKBP12.6−/− and wild-type islets. These results indicate that FKBP12.6 plays a role in glucose-induced insulin secretion downstream of ATP production, independently of ATP-sensitive K+ channels, in pancreatic β-cells.  相似文献   

15.

Background

Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants.

Results

Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein.

Conclusion

Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.  相似文献   

16.
STARD10, a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) protein family, is highly expressed in the liver and has been shown to transfer phosphatidylcholine. Therefore it has been assumed that STARD10 may function in the secretion of phospholipids into the bile. To help elucidate the physiological role of STARD10, we produced Stard10 knockout mice (Stard10−/−) and studied their phenotype. Neither liver content nor biliary secretion of phosphatidylcholine was altered in Stard10−/− mice. Unexpectedly, the biliary secretion of bile acids from the liver and the level of taurine-conjugated bile acids in the bile were significantly higher in Stard10−/− mice than wild type (WT) mice. In contrast, the levels of the secondary bile acids were lower in the liver of Stard10−/− mice, suggesting that the enterohepatic cycling is impaired. STARD10 was also expressed in the gallbladder and small intestine where the expression level of apical sodium dependent bile acid transporter (ASBT) turned out to be markedly lower in Stard10−/− mice than in WT mice when measured under fed condition. Consistent with the above results, the fecal excretion of bile acids was significantly increased in Stard10−/− mice. Interestingly, PPARα-dependent genes responsible for the regulation of bile acid metabolism were down-regulated in the liver of Stard10/ mice. The loss of STARD10 impaired the PPARα activity and the expression of a PPARα-target gene such as Cyp8b1 in mouse hepatoma cells. These results indicate that STARD10 is involved in regulating bile acid metabolism through the modulation of PPARα-mediated mechanism.  相似文献   

17.
In this study, interactions between Cry1Ac, a toxic crystal protein produced by Bacillus thuringiensis (Berliner), and Beauveria bassiana on the mortality and survival of Ostrinia furnacalis was evaluated in the laboratory. The results showed that Cry1Ac is toxic to O. furnacalis. Not only were larval growth and development delayed, but pupation, pupal weight and adult emergency also decreased when larvae were fed on artificial diet containing purified Cry1Ac toxin. When third instars O. furnacalis were exposed to combination of B. bassiana (1.8 × 105, 1.8 × 106 or 1.8 × 107 conidia ml−1) and Cry1Ac, (0.2 or 0.8 μg g−1), the effect on mortality was additive, however, the combinations of sublethal concentrations showed antagonism between Cry1Ac (3.2 or 13 μg g−1) and B. bassiana (1.8 × 105 or 1.8 × 106 conidia ml−1). When neonates were reared on sublethal concentrations of Cry1AC until the third instar, and survivors exposed B. bassiana conidial suspension, such treatments showed additive effect on mortality of O. furnacalis except for the combination of Cry1Ac (0.2 μg g−1) and B. bassiana (1.8 × 106 conidia ml−1) that showed antagonism.  相似文献   

18.
We investigated whether primary hypercholesterolaemia per se affects glucose homeostasis and insulin secretion in low-density lipoprotein receptor knockout mice (LDLR−/−). Glucose plasma levels were increased and insulin decreased in LDLR−/− compared to the wild-type mice. LDLR−/− mice presented impaired glucose tolerance, but normal whole body insulin sensitivity. The dose–response curve of glucose-stimulated insulin secretion was shifted to the right in LDLR−/− islets. Significant reductions in insulin secretion in response to l-leucine or 2-ketoisocaproic acid were also observed in LDLR−/−. Islet morphometric parameters, total insulin and DNA content were similar in both groups. Glucose uptake and oxidation were reduced in LDLR−/− islets. Removal of cholesterol from LDLR−/− islets corrected glucose-stimulated insulin secretion. These results indicate that enhanced membrane cholesterol content due to hypercholesterolaemia leads to a lower insulin secretion and glucose intolerance without affecting body insulin sensitivity. This represents an additional risk factor for diabetes and atherosclerosis in primary hypercholesterolaemia.  相似文献   

19.
20.
Two novel surface plasmon resonance immunosensors were fabricated for detection of the Bacillus thuringiensis Cry1Ab protein and to demonstrate their performance in analyzing Cry1Ab protein in crop samples. Sensor 2 was modified by 1,6-hexanedithiol, Au/Ag alloy nanoparticles, 3-mercaptopropionic acid, and protein A (or not [sensor 1]), with Cry1Ab monoclonal antibody. As a result, both of the immunosensors exhibited satisfactory linear responses in the Cry1Ab protein concentration ranges of 10 to 500 ng ml−1 and 8 to 1000 ng ml−1, and the detection limits were 5.0 and 4.8 ng ml−1, respectively. The immunosensors possessed good specificity and acceptable reproducibility. In addition, crop samples could be analyzed after a simple treatment. The transgenic crops could be easily identified from the conventional ones by the two immunosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号