首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CLP36 is a member of the ALP/Enigma protein family and has been shown to be localized to stress fibers in various cells. We previously reported that depletion of CLP36 caused loss of stress fibers in BeWo choriocarcinoma cells, but it remains unclear how CLP36 contributes to stress fiber formation. In this study, we generated CLP36-depleted F2408 fibroblasts and found that stress fibers showed abnormal non-oriented organization in these cells. In addition to CLP36, F2408 cells contained RIL, another ALP/Enigma protein, and we demonstrated that RIL could compensate for the role of CLP36 in stress fiber formation. CLP36 and RIL form a complex with α-actinin-1 and palladin. We found a strong correlation between loss of CLP36/RIL and failure of α-actinin-1 or palladin to localize on stress fibers. In addition, time lapse observation revealed that incorporation of RIL stabilizes stress fibers and that CLP36 influences the dynamic architecture of these fibers. Our findings indicate that CLP36 and RIL have a redundant role in the formation of stress fibers, but have different effects on stress fiber dynamics in F2408 cells.  相似文献   

2.
CLP36, one of the α-Actinin Associated LIM Protein (ALP)/Enigma family proteins, has a wide tissue distribution, but little is known about its expression and role in the nervous system. We show here that CLP36 is expressed in sensory ganglia but not in the CNS of adult rats. In primary dorsal root ganglion (DRG) neurons, CLP36 is distributed in the soma and neurites with enrichment in the growth cones. CLP36 forms a complex with α-actinin and is localized to actin cytoskeleton. To examine the role of CLP36 in neuronal cells, we transfected PC12 cells with a series of CLP36 deletion mutants and found that over-expression of CLP36 PDZ domain affects neurite outgrowth. Reduction of CLP36 function in PC12 cells by RNA interference (RNAi) induced lamellipodial protrusions around cell periphery and activated growth-cone movements, resulting in an increase in the length and number of neurites. Similarly, inhibition of CLP36 in primary DRG neurons increased the rate of neurite-bearing cells. We also found that CLP36 is up-regulated in DRG neurons and facial motoneurons after nerve injury. These findings suggest that CLP36 serves as a scaffold to form a multiprotein complex that regulates actin cytoskeleton dynamics and plays a role in controlling neurite outgrowth.  相似文献   

3.
The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state.  相似文献   

4.
The Z-line is a specialized structure connecting adjacent sarcomeres in muscle cells. alpha-Actinin cross-links actin filaments in the Z-line. Several PDZ-LIM domain proteins localize to the Z-line and interact with alpha-actinin. Actinin-associated LIM protein (ALP), C-terminal LIM domain protein (CLP36), and Z band alternatively spliced PDZ-containing protein (ZASP) have a conserved region named the ZASP-like motif (ZM) between PDZ and LIM domains. To study the interactions and function of ALP we used purified recombinant proteins in surface plasmon resonance measurements. We show that ALP and alpha-actinin 2 have two interaction sites. The ZM motif was required for the interaction of ALP internal region with the alpha-actinin rod and for targeting of ALP to the Z-line. The PDZ domain of ALP bound to the C terminus of alpha-actinin. This is the first indication that the ZM motif would have a direct role in a protein-protein interaction. These results suggest that the two interaction sites of ALP would stabilize certain conformations of alpha-actinin 2 that would strengthen the Z-line integrity.  相似文献   

5.
Targeting of proteins to a particular cellular compartment is a critical determinant for proper functioning. LPP (LIM-containing lipoma-preferred partner) is a LIM domain protein that is localized at sites of cell adhesion and transiently in the nucleus. In various benign and malignant tumors, LPP is present in a mutant form, which permanently localizes the LIM domains in the nucleus. Here, we have investigated which regions in LPP target the protein to its subcellular locations. We found that the LIM domains are the main focal adhesion targeting elements and that the proline-rich region of LPP, which harbors binding sites for alpha-actinin and vasodilator-stimulated phosphoprotein (VASP), has a weak targeting capacity. All of the LIM domains of LPP cooperate in order to provide robust targeting to focal adhesions, and the linker between LIM domains 1 and 2 plays a pivotal role in this targeting. When overexpressed in the cytoplasm of cells, the LIM domains of LPP can deplete endogenous LPP and vinculin from focal adhesions. The proline-rich region of LPP contains targeting sites for focal adhesions and stress fibers that are distinct from the alpha-actinin and VASP binding sites, and the LPP LIM domains are dispensable for targeting LPP to the nucleus. Our studies have defined novel functional domains in the LPP protein.  相似文献   

6.
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.  相似文献   

7.
8.
The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call 'ALP-like motif' (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.  相似文献   

9.
Alpha-actinin can be proteolytically cleaved into major fragments of 27 and 53 kD using the enzyme thermolysin. The 27-kD fragment contains an actin-binding site and we have recently shown that the 53-kD fragment binds to the cytoplasmic domain of beta 1 integrin in vitro (Otey, C. A., F. M. Pavalko, and K. Burridge. 1990. J. Cell Biol. 111:721-729). We have explored the behavior of the isolated 27- and 53-kD fragments of alpha-actinin after their microinjection into living cells. Consistent with its containing a binding site for actin, the 27-kD fragment was detected along stress fibers within 10-20 min after injection into rat embryo fibroblasts (REF-52). The 53-kD fragment of alpha-actinin, however, concentrated in focal adhesions of REF-52 cells 10-20 min after injection. The association of this fragment with focal adhesions in vivo is consistent with its interaction in vitro with the cytoplasmic domain of the beta 1 subunit of integrin, which was also localized at these sites. When cells were injected with greater than 5 microM final concentration of either alpha-actinin fragment and cultured for 30-60 min, most stress fibers were disassembled. At this time, however, many of the focal adhesions, particularly those around the cell periphery, remained after most stress fibers had gone. By 2 h after injection only a few small focal adhesions persisted, yet the cells remained spread. Identical results were obtained with other cell types including primary chick fibroblasts, BSC-1, MDCK, and gerbil fibroma cells. Stress fibers and focal adhesions reformed if cells were allowed to recover for 18 h after injection. These data suggest that introduction of the monomeric 27-kD fragment of alpha-actinin into cells may disrupt the actin cytoskeleton by interfering with the function of endogenous, intact alpha-actinin molecules along stress fibers. The 53-kD fragment may interfere with endogenous alpha-actinin function at focal adhesions or by displacing some other component that binds to the rod domain of alpha-actinin and that is needed to maintain stress fiber organization.  相似文献   

10.
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.  相似文献   

11.
The role of hsp27 as an inhibitor of actin polymerization was considered in the context of the actin cytoskeleton and its relationship with focal adhesion formation. The aim of this study was to evaluate the potential effects of hsp27 on focal adhesion formation as a relevant biological consequence of actin stress fiber formation. When hsp27 was overexpressed in stably transfected cells, cell attachment was delayed and recovery of disrupted stress fibers and focal adhesions was limited. In ROS 17/2.8 cells, heat shock caused the reversible disruption of stress fibers and focal adhesions. The loss of stress fibers and focal adhesions was associated with reduced phosphotyrosine on the focal adhesion kinase (FAK). Microinjection of recombinant 6-His hsp27 and phosphorylated 6-His hsp27 was used to demonstrate that nonphosphorylated hsp27 prevented the recovery of stress fibers and focal adhesions. These results provide in vivo evidence that hsp27 acts as an inhibitor of actin polymerization that can alter cellular interactions with extracellular environments by perturbation of stress fibers, and subsequently focal adhesions.  相似文献   

12.
13.
PINCH is an adaptor protein found in focal adhesions, large cellular complexes that link extracellular matrix to the actin cytoskeleton. PINCH, which contains an array of five LIM domains, has been implicated as a platform for multiple protein-protein interactions that mediate integrin signaling within focal adhesions. We had previously characterized the LIM1 domain of PINCH, which functions in focal adhesions by binding specifically to integrin-linked kinase. Using NMR spectroscopy, we show here that the PINCH LIM4 domain, while maintaining the conserved LIM scaffold, recognizes the third SH3 domain of another adaptor protein, Nck2 (also called Nckbeta or Grb4), in a manner distinct from that of the LIM1 domain. Point mutation of LIM residues in the SH3-binding interface disrupted LIM-SH3 interaction and substantially impaired localization of PINCH to focal adhesions. These data provide novel structural insight into LIM domain-mediated protein-protein recognition and demonstrate that the PINCH-Nck2 interaction is an important component of the focal adhesion assembly during integrin signaling.  相似文献   

14.
Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.  相似文献   

15.
《The Journal of cell biology》1996,133(6):1403-1415
Activated rhoA, a ras-related GTP-binding protein, stimulates the appearance of stress fibers, focal adhesions, and tyrosine phosphorylation in quiescent cells (Ridley, A.J., and A. Hall, 1992. Cell. 70:389-399). The pathway by which rho triggers these events has not been elucidated. Many of the agents that activate rho (e.g., vasopressin, endothelin, lysophosphatidic acid) stimulate the contractility of smooth muscle and other cells. We have investigated whether rho's induction of stress fibers, focal adhesions, and tyrosine phosphorylation is the result of its stimulation of contractility. We demonstrate that stimulation of fibroblasts with lysophosphatidic acid, which activates rho, induces myosin light chain phosphorylation. This precedes the formation of stress fibers and focal adhesions and is accompanied by increased contractility. Inhibition of contractility by several different mechanisms leads to inhibition of rho-induced stress fibers, focal adhesions, and tyrosine phosphorylation. In addition, when contractility is inhibited, integrins disperse from focal adhesions as stress fibers and focal adhesions disassemble. Conversely, upon stimulation of contractility, diffusely distributed integrins are aggregated into focal adhesions. These results suggest that activated rho stimulates contractility, driving the formation of stress fibers and focal adhesions and elevating tyrosine phosphorylation. A model is proposed to account for how contractility could promote these events.  相似文献   

16.
17.
The interaction of cells with extracellular matrix recruits multiple proteins to cell-matrix contact sites (e.g. focal and fibrillar adhesions), which connect the extracellular matrix to the actin cytoskeleton and regulate cell shape change, migration, and other cellular processes. We previously identified PINCH, an adaptor protein comprising primarily five LIM domains, as a binding protein for integrin-linked kinase (ILK). In this study, we show that PINCH co-localizes with ILK in both focal adhesions and fibrillar adhesions. Furthermore, we have investigated the molecular basis underlying the targeting of PINCH to the cell-matrix contact sites and the functional significance of the PINCH-ILK interaction. We have found that the N-terminal LIM1 domain, which mediates the ILK binding, is required for the targeting of PINCH to the cell-matrix contact sites. The C-terminal LIM domains, although not absolutely required, play an important regulatory role in the localization of PINCH to cell-matrix contact sites. Inhibition of the PINCH-ILK interaction, either by overexpression of a PINCH N-terminal fragment containing the ILK-binding LIM1 domain or by overexpression of an ILK N-terminal fragment containing the PINCH-binding ankyrin domain, retarded cell spreading, and reduced cell motility. These results suggest that PINCH, through its interaction with ILK, is crucially involved in the regulation of cell shape change and motility.  相似文献   

18.
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation, and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 2 (FHL2) is expressed predominantly in human heart and is only slightly expressed in skeletal muscle. Since FHL2 is an abundant protein in human heart, it may play an important role in the regulation of cell differentiation and myofibrillogenesis of heart at defined subcellular compartment. Therefore, we hypothesized that FHL2 act as a multi-functional protein by the specific arrangement of the LIM domains of FHL2 and that one of the LIM domains of FHL2 can function as an anchor and localizes it into a specific subcellular compartment in a cell type specific manner to regulate myofibrillogenesis. From our results, we observed that FHL2 is localized at the focal adhesions of the C2C12, H9C2 myoblast as well as a nonmyogenic cell line, HepG2 cells. Colocalization of vinculin-CFP and FHL2-GFP at focal adhesions was also observed in cell lines. Site-directed mutagenesis, in turn, suggested that the second LIM domain-LIM2 is essential for its specific localization to focal adhesions. Moreover, FHL2 was observed along with F-actin and focal adhesion of C2C12 and H9C2 myotubes. Finally, we believe that FHL2 moves from focal adhesions and then stays at the Z-discs of terminally differentiated heart muscle.  相似文献   

19.
ALP, CLP-36 and RIL form the ALP subfamily of PDZ-LIM proteins. ALP has been implicated in sarcomere function in muscle cells in association with alpha-actinin. The closely related CLP-36 is predominantly expressed in nonmuscle cells, where it localizes to actin stress fibers also in association with alpha-actinin. Here we have studied the expression and functions of RIL originally identified as a gene downregulated in H-ras-transformed cells. RIL was mostly expressed in nonmuscle epithelial cells with a pattern distinct from that of CLP-36. RIL protein was found to localize to actin stress fibers in nonmuscle cells similarly to CLP-36. However, RIL expression led to partially abnormal actin filaments showing thick irregular stress fibers not seen with CLP-36. Furthermore, live cell imaging demonstrated altered stress fiber dynamics with rapid formation of new fibers and frequent collapse of thick irregular fibers in EGFP-RIL-expressing cells. These effects may be mediated through the association of RIL with alpha-actinin, as RIL was found to associate with alpha-actinin via its PDZ domain, and RIL enhanced the ability of alpha-actinin to cosediment with actin filaments. These results implicate the RIL PDZ-LIM protein as a regulator of actin stress fiber turnover.  相似文献   

20.
PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein alpha-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal beta-TM). The interaction between Enigma and skeletal beta-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal beta-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal beta-TM in transfected cells. The association of Enigma with skeletal beta-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号