首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Cr(VI)-resistant yeast, designated strain DBVPG 6502, was isolated from a sewage treatment plant receiving wastes from tannery industries in Italy. The strain was tentatively identified as a species of Candida based on morphological and physiological analyses. This strain was highly resistant to Cr(VI) when compared with eight other yeast species, growing at Cr(VI) concentrations of up to 500 micrograms/ml (10 mM). This resistance was constitutive. The Cr(VI)-resistant yeast did not reduce Cr(VI) to Cr(III) species under aerobic conditions. The yeast showed very little accumulation of Cr(VI). Consequently, the mechanism of resistance of the yeast to Cr(VI) appears to involve reduced accumulation of Cr, as has been shown in Cr(VI)-resistant bacteria.  相似文献   

2.
In the present investigation, five novel Cr(VI) reducing bacteria were isolated from tannery effluents and solid wastes and identified as Kosakonia cowanii MKPF2, Klebsiella pneumonia MKPF5, Acinetobacter gerneri MKPF7, Klebsiella variicola MKPF8 and Serratia marcescens MKPF12 by 16S rDNA gene sequence analysis. The maximum tolerance concentration of Cr(VI) as K2Cr2O7 of the bacterial isolates was varying up to 2000 mg/L. Among the investigated bacterial isolates, A. gerneri MKPF7 was best in terms of reduction rate. The optimum temperatures for growth and Cr(VI) reduction by the bacterial isolates were 35 and 40 °C, respectively except A. gerneri MKPF7 which grew and reduced Cr(VI) optimally at 40 °C. The optimum pH for growth and Cr(VI) reduction by K. cowanii MKPF2, A. gerneri MKPF7 and S. marcescens MKPF12 was 7.0 whereas the optimum pH for growth and Cr(VI) reduction by K. pneumoniae MKPF5 and K. variicola MKPF8 were 7.0, 8.0 and 6.0, 7.0, respectively. All the bacterial isolates showed maximum tolerance against Ni2+ and Zn2+ whereas minimum tolerance was observed against Hg2+ and Cd2+. The bacteria isolated in the present study thus can be used as eco-friendly biological expedients for the remediation and detoxification of Cr(VI) from the contaminated environments.  相似文献   

3.
The enumeration of yeast populations in a sewage treatment plant   总被引:1,自引:0,他引:1  
W B Cooke 《Mycologia》1965,57(5):696-703
  相似文献   

4.
Enrichment mixed cultures tolerating relatively high concentrations of chromium and salt ions were isolated and their bioaccumulation properties improved by adaptation. Mixed cultures were enriched in Nutrient Broth media containing 25-300 mg l(-1) Cr(VI) and 0%, 2%, 4%, 6% (w/v) NaCl. Bioaccumulation of Cr(VI) was studied in a batch system as a function of initial pH (7, 8 and 9), Cr(VI) and NaCl concentrations. Increasing NaCl and Cr(VI) concentrations led to significant decreases in percentage uptake and dried weight of mixed cultures but increased maximum specific chromium uptake. The maximum specific chromium uptake value at pH 8 was 58.9 mg g(-1) for 316.1 mg l(-1) Cr(VI) in the absence of NaCl, while at pH 9 it was 130.1 mg g(-1) in media including 194.5 mg l(-1) Cr(VI) and 2% NaCl concentrations. At 4% NaCl, the maximum Cr(VI) uptake of 127.0 mg g(-1) for 221.1 mg l(-1) Cr(VI) occurred at pH 9, while at 6% NaCl the maximum Cr(VI) uptake of 114.9 mg g(-1) for 278.1 mg l(-1) Cr(VI) was found at pH 7.  相似文献   

5.
The mechanism of Cr(VI)-induced toxicity in plants and animals has been assessed for mitochondrial bioenergetics and membrane damage in turnip root and rat liver mitochondria. By using succinate as the respiratory substrate, ADP/O and respiratory control ratio (RCR) were depressed as a function of Cr(VI) concentration. State 3 and uncoupled respiration were also depressed by Cr(VI). Rat mitochondria revealed a higher sensitivity to Cr(VI), as compared to turnip mitochondria. Rat mitochondrial state 4 respiration rate triplicated in contrast to negligible stimulation of turnip state 4 respiration. Chromium(VI) inhibited the activity of the NADH-ubiquinone oxidoreductase (complex I) from rat liver mitochondria and succinate-dehydrogenases (complex II) from plant and animal mitochondria. In rat liver mitochondria, complex I was more sensitive to Cr(VI) than complex II. The activity of cytochrome c oxidase (complex IV) was not sensitive to Cr(VI). Unique for plant mitochondria, exogenous NADH uncoupled respiration was unaffected by Cr(VI), indicating that the NADH dehydrogenase of the outer leaflet of the plant inner membrane, in addition to complexes III and IV, were insensitive to Cr(VI). The ATPase activity (complex V) was stimulated in rat liver mitochondria, but inhibited in turnip root mitochondria. In both, turnip and rat mitochondria, Cr(VI) depressed mitochondrial succinate-dependent transmembrane potential (Deltapsi) and phosphorylation efficiency, but it neither affected mitochondrial membrane permeabilization to protons (H+) nor induced membrane lipid peroxidation. However, Cr(VI) induced mitochondrial membrane permeabilization to K+, an effect that was more pronounced in turnip root than in rat liver mitochondria. In conclusion, Cr(VI)-induced perturbations of mitochondrial bioenergetics compromises energy-dependent biochemical processes and, therefore, may contribute to the basal mechanism underlying its toxic effects in plant and animal cells.  相似文献   

6.
The main aim of this study was to investigate the influence of the sulfate ion on the tolerance to Cr(VI) and the Cr(VI) reduction in a yeast strain isolated from tannery wastewater and identified as Candida sp. FGSFEP by the D1/D2 domain sequence of the 26S rRNA gene. The Candida sp. FGSFEP strain was grown in culture media with sulfate concentrations ranging from 0 to 23.92 mM, in absence and presence of Cr(VI) [1.7 and 3.3 mM]. In absence of Cr(VI), the yeast specific growth rate was practically the same in every sulfate concentration tested, which suggests that sulfate had no stimulating or inhibiting effect on the yeast cell growth. In contrast, at the two initial Cr(VI) concentrations assayed, the specific growth rate of Candida sp. FGSFEP rose when sulfate concentration increased. Likewise, the greater efficiencies and volumetric rates of Cr(VI) reduction exhibited by Candida sp. FGSFEP were obtained at high sulfate concentrations. Yeast was capable of reducing 100% of 1.7 mM Cr(VI) and 84% of 3.3 mM Cr(VI), with rates of 0.98 and 0.44 mg Cr(VI)/L h, with 10 and 23.92 mM sulfate concentrations, respectively. These results indicate that sulfate plays an important role in the tolerance to Cr(VI) and Cr(VI) reduction in Candida sp. FGSFEP. These findings may have significant implications in the biological treatment of Cr(VI)-laden wastewaters.  相似文献   

7.
Out of nineteen bacteria screened from the tannery waste dump site, the most effective isolate, strain DU17 was selected for Cr(VI) reduction process among the non-pathogenic once. Based on 16S rRNA gene sequence analysis, the bacterium was identified as Enterobacter sp. DU17. Its amplified Cr(VI) reductase gene showed maximum homology with flavoprotein of Enterobacter cloacae. Enterobacter sp. DU17 reduced Cr(VI) maximally at 37 °C and pH 7.0. Various co-metals, electron (e) donors and inhibitors were tested to study their effect on Cr(VI) reduction. In presence (0.2% each) of glucose and fructose, Enterobacter sp. DU17 reduced Cr(VI) completely after 16 and 20 h, respectively. Since the concentration of total Cr was invariable after remediation as detected through AAS analysis, this experiment disclosed that responsible operation was associated with extracellular Cr(VI) reduction process rather than uptake mechanism. Multiple antibiotic resistance index of 0.08 for this bacterium was very low as compared to standard risk assessment value of 0.20. With high Cr(VI) reducing capability, non-pathogenicity and antibiotic sensitivity, Enterobacter sp. DU17 is found to be very efficient in removing Cr(VI) toxicity from the environment.  相似文献   

8.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

9.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

10.
11.
Summary A new strain of Desulfovibrio gigas was isolated from sludge of a sewage plant. The medium contained ethanol, sulfate, minerals, some vitamins but no source of combined nitrogen. Several enrichment cultures of sulfate reducers could be obtained by employing the method to sludge samples from various sewage plants. With respect to their morphology, the dominating bacteria were of the Desulfovibrio gigas type.  相似文献   

12.
Working at thermophilic conditions instead of mesophilic, and also the addition of a co-substrate, are both the ways to intend to improve the anaerobic digestion of the source-collected organic fraction of municipal solid wastes (SC-OFMSW). Addition of sewage treatment plant fat, oil and grease wastes (STP-FOGW), that are nowadays sent to landfill, would represent an opportunity to recover a wasted methane potential and, moreover, improve the whole process. In this study, after a first period feeding only SC-OFMSW, a co-digestion step was performed maintaining thermophilic conditions. During the co-digestion period enhancements in biogas production (52%) and methane yield (36%) were achieved. In addition, monitoring of microbial structure by using PCR-DGGE and cloning techniques showed that bacterial community profiles clustered in two distinct groups, before and after the extended contact with STP-FOGW, being more affected by the STP-FOGW addition than the archaeal one.  相似文献   

13.
Two strains of a basidiomycetous yeast were derived from an insect trypanosomatid culture isolated from the intestine of a plant bug, Collaria oleosa (Heteroptera: Miridae), collected in Costa Rica. The yeast did not form ballistoconidia but reproduced only by budding. Teliospores were not observed in individual and crossed cultures of each strain. Morphological and other taxonomic characteristics of the yeast were similar to those of the species in the polyphyletic genus Rhodotorula. However, molecular phylogeny inferred from the internal transcribed spacers and D1/D2 region of the large subunit rRNA gene showed that the strains represent a new species placed among the smut fungi in the family Ustilentylomataceae, which includes Aurantiosporium subnitens, Fulvisporium restifaciens, Ustilentyloma fluitans, and Rhodotorula hordea. Given the well distinguished phylogenetic position of this novel species within the Ustilentylomataceae, we propose Microbotryozyma collariae gen. nov., sp. nov. to accommodate the yeast isolated from C. oleosa, with strain American Type Culture Collection MYA-4666T (= PRA303-1S = CBS 12537) designated as the type strain.  相似文献   

14.
Cr(VI) is a known human carcinogen. Although it has been investigated widely, the mechanism(s) of its action is/are not fully understood. The aim of this study was to evaluate Cr(VI)-induced damage to the cell cytoskeleton and the mode of cell death in primary cultures of hepatocytes. Exposure of the cultured cells (10(5)/cm(2)) to 1 and 5 microM Cr(VI) for 24 h resulted in loss of the cell cytoskeleton, and this was accompanied by membrane blebbing and shrinking of the cell. Staining of the cells with annexin V and propidium iodide showed that Cr(VI) induces apoptosis at low concentrations (5 microM), whereas at higher concentrations (25 microM) it induces necrosis. This study shows that Cr(VI) causes damage to the cell cytoskeleton, and induces apoptosis at low concentrations. However, the importance of necrosis and apoptosis in vivo, and the effects of longer exposure times, which simulate environmental and occupational exposure to Cr(VI), remain to be investigated.  相似文献   

15.
Abstract

The removal of hexavalent chromium from aqueous solution using grape stalks wastes encapsulated in calcium alginate (GS–CA) beads was investigated. Cr(VI) sorption kinetics were evaluated as a function of chromium initial concentration and grape stalks (GS) content in the calcium alginate (CA) beads. The process follows pseudo second-order kinetics. Transport properties of hexavalent chromium on GS–CA beads was characterised by calculating chromium diffusion coefficient using the Linear Absorption Model (LAM). Langmuir isotherms, at pH 3.0 were used to describe sorption equilibrium data as a function of GS percentage in the CAbeads. Maximum uptake obtained was 86.42 mmol of Cr(VI) per L of wet sorbent volume. Results indicated that both kinetic and equilibrium models describe adequately the adsorption process.  相似文献   

16.
Bacterial strain 5bvl1, isolated from a chromium-contaminated wastewater treatment plant and identified as Ochrobactrum tritici, was resistant to a broad range of antibiotics, to Cr(VI), Ni(II), Co(II), Cd(II), and Zn(II), and was able to grow in the presence of 5% NaCl and within the pH range 4-10. Characterization showed that strain 5bvl1 could be considered a halotolerant and alkalitolerant microorganism resistant to high concentrations of Cr(VI). This strain was able to grow aerobically in up to 10 mmolxL(-1) Cr(VI). Cr(VI) resistance was independent of sulphate concentration. Under aerobic conditions strain 5bvl1 was also able to reduce high Cr(VI) concentrations (up to 1.7 mmolxL(-1)). Increasing concentrations of Cr(VI) in the medium lowered the growth rate of strain 5bv11 but the reduction in growth rate could not be directly correlated with the amount of Cr(VI) reduced. Unlike the type strain, which was only able to reduce Cr(VI), strain 5bvl1 was resistant to Cr(VI) and able to reduce it. Moreover, in strain 5bvl1, the rate and extent of Cr(VI)-reduction were higher than in the other strains of the genus Ochrobactrum. Ochrobactrum strain 5bvl1 resists high Cr(VI) concentrations and has a high Cr(VI)-reducing ability, making it a valuable tool in bioremediation.  相似文献   

17.
Budding methylotrophic bacteria resembling Hyphomicrobium spp. were counted for 12 months in a German sewage treatment plant by most-probable-number (MPN) methods. Influent samples contained up to 2 x 10(sup4) cells ml(sup-1), activated sludge consistently contained 1 x 10(sup5) to 5 x 10(sup5) cells ml(sup-1), and the effluent contained 1 x 10(sup3) to 4 x 10(sup3) cells ml(sup-1). The receiving lake had only 2 to 12 cells ml(sup-1). Six morphological groups with different growth requirements could be observed among 1,199 pure cultures that had been isolated from MPN dilutions. With dot blot DNA hybridizations, 671 isolates were assigned to 30 hybridization groups (HGs) and 84 could not be classified. Only HG 22 hybridized with a known species, Hyphomicrobium facilis IFAM B-522. Fourteen HGs (HGs 8 to 20 and HG 22) were specific for the lake; most others occurred only in the treatment plant. HGs 1, 3, and 26 were found in the activated sludge tank throughout the year, and HGs 27 and 28 were found for most of the year. In summary, it was demonstrated that bacteria with nearly identical and specific morphologies and nutritional types showed a high level of genetic diversity, although they were isolated under the same conditions and from the same treatment plant or its receiving lake. A directional exchange of these genetically different populations was possible but less significant, as was shown by the establishment of distinct populations in specific stations.  相似文献   

18.
19.
ABSTRACT

Microbial waste biomass, a by-product of the fermentation industry, was developed as a biosorbent to remove hexavalent chromium (Cr) from the acidic effluent of a metal processing industry. In batch sorption, 100% Cr(VI) removal was achieved from aqueous solution in 30 min contact at pH 4.0–5.0. The Cr(VI) sorption equilibrium was evaluated using the Langmuir and Freundlich models, indicating the involvement of ion exchange and physicochemical interaction. Fourier transform infrared (FTIR) analysis revealed the presence of amine, hydroxyl, and imine functional groups present on the surface of microbial biomass that are involved in Cr binding. In a continuous sorption system, 95 mg L?1 of Cr(VI) was adsorbed before the column reached a breakthrough point of 0.1 mg L?1 Cr(VI) at the column outlet. An overall biosorption capacity of 12.6 mg Cr(VI) g?1 of dry microbial waste was achieved, including the partially saturated portion of the dynamic sorption zone. Insignificant change in metal removal was observed up to 10 cycles. In pilot-scale studies, 100% removal of Cr(VI) was observed up to 5 weeks, and the method was found to be cost-effective, commercially viable, and environmentally friendly, as it does not generate toxic chrome sludge.  相似文献   

20.
Two chromium-resistant bacteria (IFR-2 and IFR-3) capable of reducing/transforming Cr(VI) to Cr(III) were isolated from tannery effluents. Isolates IFR-2 and IFR-3 were identified as Staphylococcus aureus and Pediococcus pentosaceus respectively by 16S rRNA gene sequence analyses. Both isolates can grow well on 2,000 mg/l Cr(VI) (as K2Cr2O7) in Luria-Bertani (LB) medium. Reduction of Cr(VI) was found to be growth-associated in both isolates and IFR-2 and IFR-3 reduced 20 mg/l Cr(VI) completely in 6 and 24 h respectively. The Cr(VI) reduction due to chromate reductase activity was detected in the culture supernatant and cell lysate but not at all in the cell extract supernatant of both isolates. Whole cells of IFR-2 and IFR-3 converted 24 and 30% of the initial Cr(VI) concentration (1 mg/l) in 45 min respectively at 37°C. NiCl2 stimulated the growth of IFR-2 whereas HgCl2 and CdCl2 significantly inhibited the growth of both isolates. Optimum temperature and pH for growth of and Cr(VI) reduction by both isolates were found to be between 35 and 40°C and pH 7.0 to 8.0. The two bacterial isolates can be good candidates for detoxification of Cr(VI) in industrial effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号