首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
泛素-蛋白酶体途径是真核细胞内降解蛋白质的重要途径,对于维持细胞的正常功能起着重要作用。雌激素受体α(ERα)作为转录因子,与乳腺癌的发生及进展关系密切,抑制ERα的功能已经成为治疗乳腺癌的主要策略之一。目前发现泛素-蛋白酶体途径能够促进ERα降解,影响其转录。简要综述了泛素-蛋白酶体途径对雌激素受体α的转录及降解调控的研究进展。  相似文献   

2.
靶向蛋白降解 (Targeted protein degradation,TPD) 技术利用细胞内天然存在的两大蛋白降解系统:泛素化-蛋白酶体系统与溶酶体降解途径实现对疾病相关蛋白的特异、高效降解,从而达到疾病治疗的效果。相较于传统的小分子抑制剂,基于TPD技术的药物在靶点蛋白的选择上限制性更小,能够作用于“无成药性”的蛋白,从而拥有更为丰富的靶点库。与在基因、mRNA层面干扰蛋白表达的技术相比,TPD药物具有特异、快速以及不受蛋白翻译后修饰约束等特点。在过去的20年里,基于TPD技术的各类降解系统层出不穷,相关研究成果在近些年呈爆发式增长,更令人兴奋的是,2019年两种基于TPD技术的治疗性药物进入临床阶段并初步显示出良好的治疗效果。虽然TPD技术的发展处于起步阶段,目前仍存在诸多缺陷,但凭借其独有的优势,在不久的将来,该技术必将成为药物研发的主要手段之一,同时,也将给学术界和产业界带来前所未有的机遇。本综述详细介绍了基于TPD技术的不同降解系统的研究现状,阐述了各系统在疾病治疗中的应用,系统地总结了各自的优势和不足,以期为TPD技术在科学研究和药物研发中的进一步应用提供理论指导。  相似文献   

3.
内质网相关蛋白降解(ER-associated protein degradation,或ER-associated degradation,ERAD)是真核细胞蛋白质质量控制的重要途径,它承担着对错误折叠蛋白的鉴别、分检和降解,清除无功能蛋白在细胞内的积累。ERAD过程包括错误折叠蛋白质的识别、蛋白质从ER向细胞基质逆向转运和蛋白质在细胞基质中的降解三个步骤。ERAD与人类的某些疾病密切相关,有些病毒能巧妙利用ERAD逃遁宿主免疫监控和攻击。  相似文献   

4.
泛素-蛋白酶体降解途径在细胞周期调控中的作用   总被引:6,自引:0,他引:6  
细胞周期的进程由一系列细胞周期蛋白依赖性激酶(CDK)和CDK活性调节因子驱动。泛素-蛋白酶体对细胞周期调节因子的降解是细胞调控分裂进程的重要手段。CDK活性抑制因子的降解是细胞分裂所必需的,而细胞周期正调控因子的降解则对维持细胞稳态至关重要。本从参与调控的2类泛素连接酶SCF复合物、APC/C复合物的结构和功能的角度阐述了泛素-蛋白酶体降解途径在整个细胞周期调控中的作用和意义。  相似文献   

5.
泛素-蛋白酶体途径——降解溶酶体外蛋白的主要细胞内系统,在许多细胞功能中发挥重要作用。为自身利益如病毒出芽、凋亡抑制和免疫逃避,许多病毒已经进化出了利用泛素-蛋白酶体途径的不同策略。深入理解泛素-蛋白酶体途径在病毒感染中的作用有助于揭示一些病毒病的致病机理和发现新的分子靶标以开发抗病毒药物。因此,将泛素-蛋白酶体途径在病毒感染中的作用方面的最新进展作一综述。  相似文献   

6.
蛋白质泛素化修饰的生物信息学研究进展   总被引:4,自引:0,他引:4  
卢亮  李栋  贺福初 《遗传》2013,35(1):17-26
泛素-蛋白酶体系统(Ubiquitin-proteasome system, UPS)介导了真核生物80%~85%的蛋白质降解, 该蛋白质降解途径具有依赖ATP、高效、高度选择性的特点。除参与蛋白质降解之外, 泛素化修饰还可以直接影响蛋白质的活性和定位。由于泛素化修饰底物蛋白在细胞中的广泛存在, 泛素化修饰可以调控包括细胞周期、细胞凋亡、转录调控、DNA损伤修复以及免疫应答等在内的多种细胞活动。近年来, 泛素-蛋白酶体系统相关的蛋白质组学数据不断产出, 有效地管理、组织并合理分析这些数据显得尤为必要。文章综述了当前世界范围内针对蛋白质泛素化修饰展开的生物信息学研究, 总结了前人的工作结果, 包括UPS相关蛋白质数据的收录、泛素化修饰网络的构建和分析、泛素化修饰位点的预测及泛素化修饰motif的研究等方面内容, 并对该领域未来的发展方向进行了讨论。  相似文献   

7.
泛素-蛋白酶体途径的组成和功能   总被引:11,自引:0,他引:11  
Ni XG  Zhao P 《生理科学进展》2006,37(3):255-258
泛素-蛋白酶体途径是细胞内蛋白质选择性降解的重要途径,泛素分子主要通过泛素活化酶、泛素结合酶和泛素-蛋白连接酶与靶蛋白结合形成一条多泛素链,最后被26S蛋白酶体识别和降解。泛素-蛋白酶体途径参与细胞内的多种活动过程,包括细胞凋亡、MHCI类抗原的递呈、细胞周期以及细胞内信号转导,与细胞的一些生理功能和病理状态有着密切的联系。本文主要对组成泛素-蛋白酶体途径的各成分作一综述。  相似文献   

8.
蛋白质的翻译后修饰是保证其能正常行使功能的前提,泛素化修饰是维持细胞正常蛋白质水平和活性的重要翻译后修饰类型.近年来,大量研究发现,E3泛素连接酶斑点型锌指结构蛋白(speckle-type POZ protein,SPOP)在诸多肿瘤与遗传疾病中存在突变,这些突变主要集中在识别底物的MATH结构域影响了与底物之间的结...  相似文献   

9.
泛素-蛋白酶体通路是体内的重要调节通路,降解短命或异常的蛋白质,与多种疾病的病理过程相关。近年来发现泛素-蛋白酶体通路参与了多种病因学说导致的动脉粥样硬化发病过程,干扰泛素-蛋白酶体通路可能成为防治动脉粥样硬化的重要靶标。  相似文献   

10.
O-GlcNAc修饰是一种特殊的糖基化修饰,几乎参与生物体内所有细胞过程的调控。该修饰与泛素化作为两种重要的蛋白质翻译后修饰形式,都与2型糖尿病、神经退行性疾病、癌症等疾病密切相关。O-GlcNAc修饰对蛋白质泛素化降解途径的影响主要体现在4个方面:(1)O-GlcNAc修饰能够抑制26S蛋白酶体的ATPase活性;(2)O-GlcNAc修饰会减少某些底物蛋白的泛素化降解;(3)O-GlcNAc修饰泛素化相关酶并调节其功能;(4)某些蛋白质(包括调控因子)发生O-GlcNAc修饰后间接影响蛋白质泛素化。  相似文献   

11.
Smad通路是TGF—β信号转导的主要通路。Smad是细胞内信号转导通路中的胞液递质,调节细胞生长、分化。它由配体结合的跨膜受体激活,随机通过细胞质进入细胞核,在细胞核中作为转录因子激活TGF-β靶基因的表达。泛素-蛋白酶体通路(ubiquitin proteasome pathway,UPP)是一种细胞胞质和核内蛋白ATP依赖性的非溶酶体降解机制.具有高度选择性地进行细胞内蛋白质的降解。该文重点介绍Smad通路的泛素-蛋白酶体通路依赖性的蛋白质降解机制。  相似文献   

12.
就近几年来泛素降解途径在生长素调节中的作用作了介绍,主要是3个蛋白家族突变体的一系列分子分析研究,即生长素应答因子(auxin responsefactors,ARFs)、生长素/吲哚乙酸(Aux/IAA)家族和泛素蛋白酶解组分.ARFs可以直接与DNA结合,介导生长素调节的基因表达;Aux/IAA通过与ARFs形成异源二聚体阻碍ARFs执行功能;泛素降解途径包括泛素激活酶El、泛素连接酶E2、泛素连接酶E3及26S蛋白酶体.生长素通过促进Aux/IAA与E3-SCFTIR1的相互作用降解Aux/IAA蛋白,释放出的ARFs与DNA结合,调节生长素相关基因表达.COP9(constitutive photomorphogenic locus 9)信号体也通过调节SCFTIl活性参与此过程.  相似文献   

13.
目的利用酵母回转实验和免疫共沉淀实验验证SIAHI和TRB3之间的相互作用并探讨其功能相关性。方法将全长形式的TRB3基因和SIAH1基因分别克隆入酵母表达载体pDBLeu和pPC86中,共转化至MaV203酵母感受态细胞,验证其相互作用,然后分别构建至真核表达载体pCMV—Myc和pFLAG—CMV-2中,采用免疫共沉淀实验进行进一步验证。通过体内泛素化实验检测SIAH1对TRB3蛋白稳定性及泛素化修饰的影响。结果通过在酵母细胞中的回转实验和HEK293rr细胞中的免疫共沉淀实验证实了TRB3与SIAH1之间的相互作用。通过体内泛素化实验证实了S1AH1介导了TRB3的泛素化修饰和降解。结论证实了TRB3与SIAH1之间的相互作用并发现SIAH1介导了TRB3的泛素化修饰和降解,为TRB3蛋白的功能研究提供了新的线索。  相似文献   

14.
铁死亡是一种新型的由铁积累和脂质过氧化驱动的调节性细胞死亡方式,且越来越多的证据表明铁死亡对包括肿瘤在内的多种疾病的发生发展有重要作用。因此,利用铁死亡进行疾病的治疗也成为基础研究和临床研究的一大方向。泛素–蛋白酶体系统(the ubiquitin-proteasome system, UPS)是真核生物蛋白的主要降解途径之一,是由泛素(ubiquitin, Ub)先标记要降解的蛋白质,进而由蛋白酶体识别和降解的过程。泛素–蛋白酶体途径功能失调会导致多种病理过程发生,因此,它对维持生物体机能稳定具有重要的意义。蛋白质稳定性的调节是铁死亡复杂的分子机制中至关重要的一部分,而泛素–蛋白酶体系统作为真核生物中大分子稳态的关键调节系统,它可以通过调节铁死亡相关分子或相关信号通路等多种方式直接或间接影响铁死亡,在铁死亡中发挥着重要作用。因此,该文就泛素–蛋白酶体系统参与调节铁死亡的相关分子或信号通路等方面进行综述,以期为以铁死亡为靶点的疾病治疗提供一定参考。  相似文献   

15.
细菌降解邻苯二甲酸酯的研究进展   总被引:1,自引:0,他引:1  
邻苯二甲酸酯(Phthalates esters, PAEs)是一类混合在塑料中以增强其可塑性和多功能性的有机化合物。同时,PAEs也是一种典型环境内分泌干扰物,长期生产和使用塑料制品已对环境和生物体乃至人类身体健康造成危害。研究发现微生物降解已成为削减环境中PAEs的主要途径。文中对近年来国内外在PAEs的结构及分类、毒理学效应、在环境中的污染状况、细菌降解的菌株多样性、降解途径及分子机制等方面的相关研究进行了总结与回顾,以期对解决PAEs的污染问题提供参考。  相似文献   

16.
p62是一种多功能泛素结合蛋白,参与泛素蛋白酶体系统(ubiquitin-proteasome system,UPS)和自噬-溶酶体系统两种蛋白降解过程。p62作为一种信号转导途径中的支架和适配子蛋白,其分子结构中的多个功能结构域可与其它蛋白质相互作用,介导多种细胞功能,特别是在细胞的选择性自噬和细胞抗氧化反应中发挥重要作用,因而p62与许多疾病的发病机制密切相关。本文主要综述p62的结构特征及其与UPS和自噬的相互关系,旨在为相关领域的研究提供参考。  相似文献   

17.
Hedgehog信号通路在胚胎发育、组织再生中发挥重要的作用,且与癌症发生发展密切相关. 其胞内调控组分Suppressor of Fused(SuFu)蛋白通过结合转录因子Gli(s),负调控该信号通路,但其作用的分子机制仍不甚清楚. 在本项研究中,以人SuFu作为诱饵蛋白,利用酵母双杂交技术成功地筛选到1个新的相互作用因子-蛋白酶体成熟蛋白(POMP). 通过免疫共沉淀、体外GST pull-down和免疫细胞化学实验验证其相互作用. 为了探究POMP与SuFu的相互作用对Hedgehog信号通路的影响,构建了POMP的过表达质粒和干扰质粒(miR-RNAi)以及转录因子Gli活性检测系统,即荧光素酶报告基因法,结果显示,过表达SuFu蛋白时POMP正调控Hedgehog信号通路,而下调POMP的表达则抑制Gli的活性. 该研究结果揭示了POMP新的生物学功能,为阐明Hedgehog信号通路的具体分子机制提供了新的线索.  相似文献   

18.
目的建立一种动态检测活细胞内泛素-蛋白酶体系统活性的方法。方法将表达绿色荧光蛋白(GFP)或红色荧光蛋白(DsRed2)的质粒分别改建为表达带有内泛素-蛋白酶体系统降解信号CL1的GFP或DsRed2的pGFP^u或pDsRed2质粒,然后转染HEK293细胞,通过G418筛选得到稳定表达GFP^u或DsRed2^u的细胞系。在蛋白酶体抑制N—Acetyl—Leu-Leu—Norleu—al(ALLN)处理GFP^u或DsRed2^u细胞后,应用免疫印记技术检测细胞内GFP或DsRed,含量的变化,应用荧光显微镜和激光扫描共聚焦显微镜技术观察GFP或DsRed,荧光强度的变化。结果ALLN处理能使GFP“和DsRed2^u细胞内GFP和DsRed。含量明显增加,荧光强度显著增强,并呈现明显的剂量/时间-效应关系。结论本文成功地建立了检测内泛素-蛋白酶体系统活性的方法,该方法能有效地对活细胞的内泛素-蛋白酶体系统活性进行实时动态检测。  相似文献   

19.
去泛素化酶USP2a是去泛素化酶家族(DUBs)的一个成员,为半胱氨酸蛋白酶,是一种重要的特异性去泛素化水解酶。USP2a具有结构和功能多样性,其结构多样化使得这些酶具有一些特异性作用靶点,特别是在基因表达调控中靶向的生理底物种类繁多。特异性蛋白泛素化水平的动态变化涉及到基因表达活化和失活的多种机制以及信号通路转导的多个环节。越来越多的文献报道了去泛素化酶相互作用网络的组成及其重要性。USP2a调节多种重要的细胞生长和分化调节因子及信号转导因子的稳定性和功能,通过USP2a的去泛素化作用以及诱导它们之间相互反应对机体进行相应调控,特别是在调控转录因子、细胞周期和细胞凋亡自噬上发挥重要作用。USP2a的过表达在体内外都表现出致癌性,其靶蛋白通过各种途径影响肿瘤发生发展。通过对人类肿瘤发生发展的相关分子机制及信号通路影响的深入研究,USP2a有望成为肿瘤治疗的新靶点。现就去泛素化酶与人类肿瘤发生发展的相关分子机制及该领域的研究进展作一综述。  相似文献   

20.
如何识别和选择性降解蛋白质是细胞生命过程中的重要环节.泛素-蛋白酶体需能降解途径的发现,揭示了蛋白质在细胞内选择性降解的普遍方式.对于需要清除的蛋白质,通过其赖氨酸残基侧链ε-氨基连接多聚泛素链(降解标签),继而在蛋白酶体中被降解.这种选择性降解机制对于维持蛋白质在细胞内含量的动态平衡起到了关键性作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号