共查询到20条相似文献,搜索用时 0 毫秒
1.
Background
Gut ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R.Methods and Findings
Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin''s beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin''s beneficial effect after gut I/R. To further confirm that ghrelin''s beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I/R injury.Conclusions
These findings suggest that ghrelin attenuates excessive inflammation and reduces organ injury after gut I/R through activation of the cholinergic anti-inflammatory pathway. 相似文献2.
B Guery R Neviere N Viget C Foucher P Fialdes F Wattel G Beaucaire 《Journal of applied physiology》1999,87(1):47-53
Inhaled nitric oxide (iNO) has been shown to have a protective effect in lung ischemia-reperfusion (I/R)-induced injuries. We studied the role of iNO (10 parts/million for 4 h) administered before I/R. In an isolated perfused lung preparation, iNO decreased the extravascular albumin accumulation from 2,059 +/- 522 to 615 +/- 105 microl and prevented the increase in lung wet-to-dry weight ratio. To study the mechanisms of this prevention, we evaluated the role of nitric oxide (NO) transport and lung exposure with matched experiments by using either lungs or blood of animals exposed to iNO and blood or lungs of naive animals. iNO-exposed blood with naive lungs did not limit the extravascular albumin accumulation (2,561 +/- 397 microl), but iNO-exposed lungs showed a leak not significantly different from the group in which both lungs and blood were iNO exposed (855 +/- 224 vs. 615 +/- 105 microl). An improvement in heart I/R left ventricular developed pressure in the animals exposed to iNO showed that blood-transported NO was, however, sufficient to trigger remote organ endothelium and reduce the consequences of a delayed injury. In conclusion, preventive iNO reduces the consequences of lung I/R injuries by a mechanism based on tissue or endothelium triggering. 相似文献
3.
Matsuhisa S Otani H Okazaki T Yamashita K Akita Y Sato D Moriguchi A Imamura H Iwasaka T 《American journal of physiology. Heart and circulatory physiology》2008,294(6):H2473-H2479
Oxidative stress is involved in the tolerance to ischemia-reperfusion (I/R) injury. Because angiotensin II type 1 receptor blockers (ARBs) inhibit oxidative stress, there is concern that ARBs abolish the tolerance to I/R injury. Dahl salt-sensitive (DS) hypertensive and salt-resistant (DR) normotensive rats received an antioxidant, 2-mercaptopropionylglycine (MPG), or an ARB, losartan, for 7 days. Losartan and MPG significantly inhibited oxidative stress as determined by tissue malondialdehyde + 4-hydroxynoneal and increased expression of inducible nitric oxide synthase (iNOS) in the DS rat heart. However, losartan but not MPG activated endothelial nitric oxide synthase (eNOS) as assessed by phosphorylation of eNOS on Ser1177. Infarct size after 30-min left coronary artery occlusion followed by 2-h reperfusion was comparable between DS and DR rat hearts. Although MPG and losartan had no effect on infarct size in the DR rat heart, MPG but not losartan significantly increased infarct size in the DS rat heart. A selective iNOS inhibitor, 1400W, increased infarct size in the DS rat heart, but it had no effect on infarct size in the losartan-treated DS rat heart. However, a nonselective NOS inhibitor, Nomega-nitro-l-arginine methyl ester, increased infarct size in the losartan-treated DS rat heart. These results suggest that losartan preserves the tolerance to I/R injury by activating eNOS despite elimination of redox-sensitive upregulation of iNOS and iNOS-dependent cardioprotection in the DS rat heart. 相似文献
4.
von Dobschuetz E Bleiziffer O Pahernik S Dellian M Hoffmann T Messmer K 《American journal of physiology. Gastrointestinal and liver physiology》2004,286(5):G791-G796
Components of the activated complement cascade are considered to play a pivotal role in ischemia-reperfusion-induced organ injury. With the use of intravital epifluorescence microscopy, we investigated the effect of complement inhibition by the recombinant soluble complement receptor 1 (sCR1; TP10) on the effect of macromolecular microvascular permeability, functional capillary perfusion, and leukocyte endothelium interaction in postischemic pancreatitis. Anaesthetized Sprague-Dawley rats were subjected to 60 min of normothermic pancreatic ischemia induced by microclipping of the blood-supplying arteries of the organ. Rats who received sCR1 (15 mg/kg body wt iv; n = 7) during reperfusion showed a significant reduction of permeability (1.77 +/- 1.34 x 10(-8) cm/s; n = 7) of tetramethylrhodamine isothiocyanate-labeled albumin injected 90 min after the onset of reperfusion compared with vehicle-treated animals (6.95 +/- 1.56 x 10(-8) cm/s; n = 7). At 120 min after the onset of reperfusion, the length of red blood cell-perfused capillaries (functional capillary density) was significantly improved (from 279 +/- 15.7 to 330 +/- 3.7 cm(-1); n = 7) and the number of leukocytes adherent to postcapillary venules was significantly reduced (from 314 +/- 87 to 163 +/- 71 mm(-2); n = 7) by sCR1 compared with vehicle treatment. Complement inhibition by sCR1 effectively ameliorates pancreatic ischemia-reperfusion-induced microcirculatory disturbances and might be considered for treatment of postischemic pancreatitis. 相似文献
5.
Tsuboi H Naito Y Katada K Takagi T Handa O Kokura S Ichikawa H Yoshida N Tsukada M Yoshikawa T 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(2):G678-G683
CXC chemokines, including human interleukin-8 and rat cytokine-induced neutrophil chemoattractant-1, play a crucial role in the pathogenesis of intestinal inflammation induced by ischemia-reperfusion (I-R). Thrombin and its specific receptor, protease-activated receptor 1 (PAR1), act as important players in inflammation. However, the association between thrombin activation and chemokine production during I-R has not been well studied. We investigated whether thrombin and PAR1 might be involved in the pathophysiology of intestinal I-R, using an in vivo model. Intestinal damage was induced by clamping the superior mesenteric artery for 30 min followed by reperfusion in male Wistar rats. Thrombin-antithrombin complex was measured as an indicator of thrombin activation. PAR1 expression in the intestine was evaluated by real-time PCR. The severity of the intestinal mucosal injury was evaluated on the distal segment of the ileum by several biochemical markers and histological findings. Reperfusion significantly increased the serum levels of thrombin-antithrombin complex and enhanced PAR1 expression in the intestinal mucosa. The levels of both intraluminal hemoglobin and protein were significantly increased in the I-R group. The mucosal myeloperoxidase activity and expressions and/or productions of cytokine-induced neutrophil chemoattractant-1 and TNF-alpha were significantly increased after I-R. These increases were inhibited by the treatment of rat with antithrombin intravenously before I-R at a dose of 30 U/kg. These results suggest that the thrombin/PAR1 pathway plays an important role in the production of these cytokines during I-R and that antithrombin exerts potent anti-inflammatory effects on this injury via inhibition of proinflammatory cytokines. 相似文献
6.
Sodhi C Levy R Gill R Neal MD Richardson W Branca M Russo A Prindle T Billiar TR Hackam DJ 《American journal of physiology. Gastrointestinal and liver physiology》2011,300(5):G862-G873
Intestinal mucosal injury occurs after remote trauma although the mechanisms that sense remote injury and lead to intestinal epithelial disruption remain incompletely understood. We now hypothesize that Toll-like receptor 4 (TLR4) signaling on enterocytes after remote injury, potentially through the endogenous TLR4 ligand high-mobility group box-1 (HMGB1), could lead to intestinal dysfunction and bacterial translocation and that activation of TLR9 with DNA could reverse these effects. In support of this hypothesis, exposure of TLR4-expressing mice to bilateral femur fracture and systemic hypotension resulted in increased TLR4 expression and signaling and disruption of the ileal mucosa, leading to bacterial translocation, which was not observed in TLR4-mutant mice. TLR4 signaling in enterocytes, not immune cells, was required for this effect, as adenoviral-mediated inhibition of TLR4 in enterocytes prevented these findings. In seeking to identify the endogenous TLR4 ligands involved, the expression of HMGB1 was increased in the intestinal mucosa after injury in wild-type, but not TLR4-mutant, mice, and administration of anti-HMGB1 antibodies reduced both intestinal mucosal TLR4 signaling and bacterial translocation after remote trauma. Strikingly, mucosal injury was significantly increased in TLR9-mutant mice, whereas administration of exogenous DNA reduced the extent of TLR4-mediated enterocyte apoptosis, restored mucosal healing, and maintained the histological integrity of the intestinal barrier after remote injury. Taken together, these findings identify a novel link between remote injury and enterocyte TLR4 signaling leading to barrier injury, potentially through HMGB1 as a ligand, and demonstrate the reversal of these adverse effects through activation of TLR9. 相似文献
7.
Masini E Vannacci A Marzocca C Pierpaoli S Giannini L Fantappié O Mazzanti R Mannaioni PF 《Experimental biology and medicine (Maywood, N.J.)》2003,228(5):546-549
Carbon monoxide (CO) is a signaling gas produced intracellularly by heme oxygenase (HO) enzymes using heme as a substrate. During heme breakdown, HO-1 and HO-2 release CO, biliverdin, and Fe(2+). In this study, we investigated the effects of manipulation of the HO-1 system in an in vivo model of focal ischemia-reperfusion (FIR) in the rat heart. Male Wistar albino rats, under general anesthesia and artificial ventilation, underwent thoracotomy, the pericardium was opened, and a silk suture was placed around the left descending coronary artery; ischemia was induced by tightening the suture and was monitored for 30 min. Subsequently, the ligature was released to allow reperfusion lasting for 60 min. The first group of rats was sham operated and injected intraperitoneally (i.p.) with saline. The second group underwent FIR. The third group was treated ip 18 hr before FIR with hemin (4 mg/kg). The fourth group was pretreated ip 24 hr before FIR and 6 hr before hemin with zinc protoporphyrin IX (ZnPP-IX, 50 microg/kg). Specimens of the left ventricle were taken for determination of HO expression and activity, infarct size, malonyldialdehyde (MDA) production, and tissue calcium content. FIR led to a significant increase in the generation of MDA and notably raised tissue calcium levels. Induction of HO-1 by hemin significantly decreased infarct size, incidence of reperfusion arrhythmias, MDA generation, and calcium overload induced by FIR. These effects were prevented by the HO-1 inhibitor ZnPP-IX. The present experiments show that the concerted actions of CO, iron, and biliverdin/bilirubin modulate the FIR-induced myocardial injury. 相似文献
8.
Lipocortin 1 reduces myocardial ischemia-reperfusion injury by affecting local leukocyte recruitment. 总被引:1,自引:0,他引:1
M D'Amico C Di Filippo M La E Solito P G McLean R J Flower S M Oliani M Perretti 《FASEB journal》2000,14(13):1867-1869
We assessed here the effect of the glucocorticoid-regulated protein lipocortin 1 (LC1) in a model of rat myocardial ischemia reperfusion. Treatment of animals with human recombinant LC1 at the end of a 25-min ischemic period significantly reduced the extent of infarct size in the area at risk as measured 2 h later, with approximately 50% inhibition at the highest dose tested of 50 microg per rat (equivalent to 5.4 nmol/kg). The protective effect of LC1 was abolished by protein denaturation and not mimicked by the structurally related protein annexin V. A combination of electron and light microscopy techniques demonstrated the occurrence of the myocardial damage at the end of the reperfusion period, with loss of fiber organization. LC1 provided a partial and visible protection. The dose-dependent protection afforded by LC1 was paralleled by lower values of myeloperoxidase activity, tumor necrosis factor a, and macrophage inflammatory protein-1a. The functional link between migrated leukocytes and the myocardial damage was confirmed by electron and light microscopy, and a significantly lower number of extravasated leukocytes was counted in the group of rats treated with LC1 (50 microg). In conclusion, we demonstrate for the first time that LC1 reduces the leukocyte-dependent myocardial damage associated with an ischemia-reperfusion procedure. 相似文献
9.
Using the isolated perfused rat liver, we investigated the relationship of glutathione (GSH) with reactive oxygen species (ROS) generation and liver cell damage during ischemia/reperfusion in normal and GSH-depleted conditions. Lucigenin-enhanced chemiluminescence was used as a sensitive index of tissue ROS generation. After 30 minutes of equilibration, livers were subjected to global ischemia for various times (60 or 90 minutes) and then reperfused for another 120 minutes. Intracellular ROS levels increased sharply at the onset of reperfusion and then declined slowly. After 30 to 60 minutes of reperfusion, ROS levels started to increase progressively in a linear fashion. However, sinusoidal glutathione disulfide release did not increase during reperfusion in the same livers, suggesting that intracellular ROS generation is too low to cause a significant increase in GSH oxidation. Pretreatment with phorone (300 mg/kg intrapentoneally [ip]), which reduced hepatic GSH by 90%, did not cause any difference in intracellular ROS generation compared with the control livers. There were also no significant differences in lactate dehydrogenase and thiobarbituric acid reactive substances (TBARS) release between the control and phorone-treated livers during reperfusion after various times of ischemia. These data indicate that ROS generation in the normal isolated perfused liver during ischemia/reperfusion is extremely low and intracellular GSH does not serve as a major intracellular defense system against such a low oxidative stress. 相似文献
10.
S Rehrig S D Fleming J Anderson J M Guthridge J Rakstang C E McQueen V M Holers G C Tsokos T Shea-Donohue 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(10):5921-5927
Complement receptor 1-related gene/protein y (Crry) is a murine membrane protein that regulates the activity of both classical and alternative complement pathways. We used a recombinant soluble form of Crry fused to the hinge, CH2, and CH3 domains of mouse IgG1 (Crry-Ig) to determine whether inhibition of complement activation prevents and/or reverses mesenteric ischemia/reperfusion-induced injury in mice. Mice were subjected to 30 min of ischemia, followed by 2 h of reperfusion. Crry-Ig was administered either 5 min before or 30 min after initiation of the reperfusion phase. Pretreatment with Crry-Ig reduced local intestinal mucosal injury and decreased generation of leukotriene B(4) (LTB(4)). When given 30 min after the beginning of the reperfusion phase, Crry-Ig resulted in a decrease in ischemia/reperfusion-induced intestinal mucosal injury comparable to that occurring when it was given 5 min before initiation of the reperfusion phase. The beneficial effect of Crry-Ig administered 30 min after the initiation of reperfusion coincided with a decrease in PGE(2) generation despite the fact that it did not prevent local infiltration of neutrophils and did not have a significant effect on LTB(4) production. These data suggest that complement inhibition protects animals from reperfusion-induced intestinal damage even if administered as late as 30 min into reperfusion and that the mechanism of protection is independent of neutrophil infiltration or LTB(4) inhibition. 相似文献
11.
Levy RM Mollen KP Prince JM Kaczorowski DJ Vallabhaneni R Liu S Tracey KJ Lotze MT Hackam DJ Fink MP Vodovotz Y Billiar TR 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(4):R1538-R1544
High-mobility group box 1 (HMGB1) is a 30-kDa DNA-binding protein that displays proinflammatory cytokine-like properties. HMGB1-dependent inflammatory processes have been demonstrated in models of sterile injury, including ischemia-reperfusion injury and hemorrhagic shock. Here, we tested the hypothesis that the systemic inflammatory response and associated remote organ injury that occur after peripheral tissue injury are highly dependent on HMGB1. Toll-like receptor 4 (TLR4) wild-type (WT) mice subjected to bilateral femur fracture after treatment with neutralizing antibodies to HMGB1 had lower serum IL-6 and IL-10 levels compared with mice treated with nonimmune control IgG. Similarly, compared with injured mice treated with control IgG, anti-HMGB1 antibody-treated mice had lower serum alanine aminotransferase levels and decreased hepatic and gut mucosal NF-kappaB DNA binding. TLR4 mutant (C3H/HeJ) mice subjected to bilateral femur fracture had less systemic inflammation and liver injury than WT controls. Residual trauma-induced systemic inflammation and hepatocellular injury were not ameliorated by treatment with a polyclonal anti-HMGB1 antibody, even though HMGB1 levels were transiently elevated just 1 h after injury in both WT and C3H/HeJ mice. Collectively, these data demonstrate a critical role for a TLR4-HMGB1 pathway in the initiation of systemic inflammation and end-organ injury following isolated peripheral tissue injury. 相似文献
12.
Cai F Li CR Wu JL Chen JG Liu C Min Q Yu W Ouyang CH Chen JH 《Mediators of inflammation》2006,2006(5):30490
Theaflavin, a major constituent of black tea, possesses biological functions such as the antioxidative, antiviral, and anti-inflammatory ones. The purpose of this study was to verify whether theaflavin reduces focal cerebral ischemia injury in a rat model of middle cerebral artery occlusion (MCAO). Male Sprague-Dawley rats were anesthetized and subjected to 2 hours of MCAO followed 24 hours reperfusion. Theaflavin administration (5, 10, and 20 mg/kg, i.v.) ameliorated infarct and edema volume. Theaflavin inhibited leukocyte infiltration and expression of ICAM-1, COX-2, and iNOS in injured brain. Phosphorylation of STAT-1, a protein which mediates intracellular signaling to the nucleus, was enhanced 2-fold over that of sham group and was inhibited by theaflavin. Our study demonstrated that theaflavin significantly protected neurons from cerebral ischemia-reperfusion injury by limiting leukocyte infiltration and expression of ICAM-1, and suppressing upregulation of inflammatory-related prooxidative enzymes (iNOS and COX-2) in ischemic brain via, at least in part, reducing the phosphorylation of STAT-1. 相似文献
13.
J. Mika B. Przewocka † C. Stover ‡ W. J. Schwaeble ‡ E. Weihe M. K.-H. Schäfer 《Journal of neurochemistry》2003,85(S2):32-32
A number of new synthetic nociceptin ligands were studied in receptor binding and functional tests in rat brain membranes and in cloned systems. Ligand binding experiments were performed with three different radioprobes developed in our lab. The nociceptin derivatives exhibited high affinity in competition experiments. Receptor-mediated G-protein activation was determined in [35 S]GTPgS binding assays. Among the new structures examined, Ac-RYYRIK-ol was found to be only a weak stimulator by itself, whereas this compound inhibited receptor-mediated G-protein activation. These data suggest that Ac-RYYRIK-ol is a high affinity peptide antagonist for the nociceptin receptor.
Acknowledgements: Supported by the Hungarian Scientific Research Fund OTKA T-035211, T-033078, T-030841, and the Ministry of Education, NKFP 1/027 Hungary. 相似文献
Acknowledgements: Supported by the Hungarian Scientific Research Fund OTKA T-035211, T-033078, T-030841, and the Ministry of Education, NKFP 1/027 Hungary. 相似文献
14.
Fleming SD Egan RP Chai C Girardi G Holers VM Salmon J Monestier M Tsokos GC 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(11):7055-7061
Complement receptor 2-deficient (Cr2(-/-)) mice are resistant to mesenteric ischemia/reperfusion (I/R) injury because they lack a component of the natural Ab repertoire. Neither the nature of the Abs that are involved in I/R injury nor the composition of the target Ag, to which recognition is lacking in Cr2(-/-) mice, is known. Because anti-phospholipid Abs have been shown to mediate fetal growth retardation and loss when injected into pregnant mice, we performed experiments to determine whether anti-phospholipid Abs can also reconstitute I/R injury and, therefore, represent members of the injury-inducing repertoire that is missing in Cr2(-/-) mice. We demonstrate that both murine and human monoclonal and polyclonal Abs against negatively charged phospholipids can reconstitute mesenteric I/R-induced intestinal and lung tissue damage in Cr2(-/-) mice. In addition, Abs against beta2 glycoprotein I restore local and remote tissue damage in the Cr2(-/-) mice. Unlike Cr2(-/-) mice, reconstitution of I/R tissue damage in the injury-resistant Rag-1(-/-) mouse required the infusion of both anti-beta2-glycoprotein I and anti-phospholipid Ab. We conclude that anti-phospholipid Abs can bind to tissues subjected to I/R insult and mediate tissue damage. 相似文献
15.
The present study was carried out in order to identify the changes in expression of multidrug resistance-associated protein (Mrp) 2 and P-glycoprotein (P-gp) in the intestine and remote organs after intestinal ischemia-reperfusion (I/R). Mrp2 expression in the jejunum and liver was decreased at 6 h after I/R. This decrease in Mrp2 expression was associated with an increase in the serum level of IL-6. These results suggest that the decreased Mrp2 expression after intestinal I/R was regulated by IL-6. The expression level of mdr1a in the ileum, which encodes P-gp, was decreased at 6 and 24 h after I/R, and the expression level of mdr1b, also encodes P-gp, was not altered at any time. P-gp protein expression in the ileum was decreased at 6 h after I/R. In the liver, mdr1a expression was decreased at 6 h after I/R, but mdr1b expression was increased at 6 h after I/R. P-gp protein was not altered at any time. In the kidney, mdr1a expression was decreased at 24 h after I/R, but mdr1b expression was not altered at any time. P-gp protein expression in the kidney was decreased at 24 h after I/R, as was mdr1a expression. These results suggest that P-gp expression after intestinal I/R differs in each organ. This is the first report to provide evidence that expression levels of transporters in remote organs are altered intestinal after I/R. 相似文献
16.
Soluble epoxide hydrolase (sEH) in endothelial cells determines the plasma concentrations of epoxyeicosatrienoic acids (EETs), which may act as vasoactive agents to control vascular tone. We hypothesized that the regulation of sEH activity may have a therapeutic value in preventing acute kidney injury by controlling the concentration of EETs. In this study, we therefore induced ischemia-reperfusion injury (IRI) in C57BL/6 mice and controlled sEH activity by intraperitoneal administration of the sEH inhibitor 12-(3-adamantan-1-ylureido)-dodecanoic acid (AUDA). The deterioration of kidney function induced by IRI was partially moderated and prevented by AUDA treatment. In addition, AUDA treatment significantly attenuated tubular necrosis induced by IRI. Ischemic injury induced the down-regulation of sEH, and AUDA administration had no effect on the expression pattern of sEH induced by IRI. In vivo sEH activity was assessed by measuring the substrate epoxyoctadecenoic acid (EpOME) and its metabolite dihydroxyoctadec-12-enoic acid (DHOME). Ischemic injury had no effects on the plasma concentrations of EpOME and DHOME, but inhibition of sEH by AUDA significantly increased plasma EpOME and the EpOME/DHOME ratio. The protective effect of the sEH inhibitor was achieved by suppression of proinflammatory cytokines and up-regulation of regulatory cytokines. AUDA treatment prevented the intrarenal infiltration of inflammatory cells, but promoted endothelial cell migration and neovascularization. The results of this study suggest that treatment with sEH inhibitors can reduce acute kidney injury. 相似文献
17.
Background
Intestinal ischemia-reperfusion (I/R) plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.Methodology/Principal Findings
Denaturing gradient gel electrophoresis (DGGE) was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.Conclusion/Significance
This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most. 相似文献18.
Effects of neutrophil elastase inhibitor (ONO-5046) on lung injury after intestinal ischemia-reperfusion. 总被引:4,自引:0,他引:4
M Takayama M Ishibashi H Ishii T Kuraki T Nishida M Yoshida 《Journal of applied physiology》2001,91(4):1800-1807
The underlying mechanisms of lung endothelial injury after intestinal ischemia-reperfusion (I/R) injury are not fully known. Here we investigated the effects of posttreatment with a neutrophil elastase inhibitor (NEI; ONO-5046) on lung injury after intestinal I/R injury in a rat model. Intestinal I/R was produced by 90 min of ischemia followed by either 60 or 240 min of reperfusion. For all experimental groups, the endothelial permeability index increased, neutrophil H(2)O(2) production increased in the pulmonary vasculature blood, neutrophil counts increased in bronchoalveolar lavage fluid (BALF), and the cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-3 levels were increased in BALF after 240 min (P < 0.01). In rats treated with NEI from 60 min after reperfusion, the lung endothelial permeability index was significantly reduced (P < 0.05), whereas neutrophil H(2)O(2) production in pulmonary vasculature blood and neutrophil count in BALF were significantly suppressed by NEI (P < 0.05 and P < 0.01, respectively). In addition, NEI significantly suppressed the increase of CINC-1 and CINC-3 levels in BALF (P < 0.05). Our study clearly indicates that posttreatment with NEI reduces neutrophil activation in the pulmonary vessels and neutrophil accumulation in the lungs and suggests that ONO-5046, even when administered after the primary intestinal insult, can prevent the progression of lung injury associated with intestinal I/R. 相似文献
19.
M D Kirkitadze M Krych D Uhrin D T Dryden B O Smith A Cooper X Wang R Hauhart J P Atkinson P N Barlow 《Biochemistry》1999,38(22):7019-7031
A segment of complement receptor type 1 (CR1) corresponding to modules 15-17 was overexpressed as a functionally active recombinant protein with N-glycosylation sites ablated by mutagenesis (referred to as CR1 approximately 15-17(-)). A protein consisting of modules 15 and 16 and another corresponding to module 16 were also overexpressed. Comparison of heteronuclear nuclear magnetic resonance (NMR) spectra for the single, double, and triple module fragments indicated that module 16 makes more extensive contacts with module 15 than with module 17. A combination of NMR, differential scanning calorimetry, circular dichroism, and tryptophan-derived fluorescence indicated a complex unfolding pathway for CR1 approximately 15-17(-). As temperature or denaturant concentration was increased, the 16-17 junction appeared to melt first, followed by the 15-16 junction, and module 17 itself; finally, modules 15 and 16 became denatured. Modules 15 and 16 adopted an intermediate state prior to total denaturation. These results are compared with a previously published study [Clark, N. S., Dodd, I, Mossakowska, D. E., Smith, R. A. G., and Gore, M. G. (1996) Protein Eng. 9, 877-884] on a fragment consisting of the N-terminal three CR1 modules which appeared to melt as a single unit. 相似文献