首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ischemia and reperfusion of the ischemic lower torso lead to a neutrophil- (PMN) dependent lung injury characterized by PMN sequestration and permeability edema. This mimics the injury seen after infusion of tumor necrosis factor alpha (TNF), a potent activator of PMN and endothelium. This study tests whether TNF is a mediator of the lung injury after lower torso ischemia. Anesthetized rats underwent 4 h of bilateral hindlimb tourniquet ischemia, followed by reperfusion for 10 min, 30 min, 1, 2, 3, and 4 h (n = 6 for each time point). Quantitative lung histology indicated progressive sequestration of PMN in the lungs, 25 +/- 3 (SE) PMN/10 high-power fields (HPF) 10 min after reperfusion vs. 20 +/- 2 PMN/10 HPF in sham animals (NS), increasing to 53 +/- 5 PMN/10 HPF after 4 h vs. 23 +/- 3 PMN/10 HPF in sham animals (P less than 0.01). There was lung permeability, shown by increasing protein accumulation in bronchoalveolar lavage (BAL) fluid, which 4 h after reperfusion was 599 +/- 91 vs. 214 +/- 35 micrograms/ml in sham animals (P less than 0.01). Similarly, there was edema, shown by the lung wet-to-dry weight ratio, which increased by 4 h to 4.70 +/- 0.12 vs. 4.02 +/- 0.17 in sham animals (P less than 0.01). There was generation of leukotriene B4 in BAL fluid (720 +/- 140 vs. 240 +/- 40 pg/ml, P less than 0.01), and in three of six rats tested at this time TNF was detected in plasma, with a mean value of 167 pg/ml. TNF was not detectable in any sham animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The aim of this study was to evaluate the effect of ( - )-epigallocatechin-3-gallate (EGCG), a natural antioxidant, on liver and lungs after warm intestinal ischemia/reperfusion (I/R). Thirty male Wistar rats were equally divided into a sham-operation group, an intestinal I/R group and an intestinal I/R group pretreated with EGCG intraperitoneally. Intestinal ischemia was induced by occlusion of the superior mesenteric artery for 60 min followed by reperfusion for 120 min. Immediately after reperfusion, liver, lung and blood samples were collected and analyzed. Results showed that intestinal I/R increased the levels of aspartate (AST) and alanine (ALT) transaminase in serum to 987 and 752 IU/l, respectively. Malondialdehyde (MDA) increased in liver to 1.524 nmol/g in the group subjected to intestinal I/R compared to 0.995 nmol/g in the sham operation group. MDA was also increased in lungs to 1.581 nmol/g compared to 0.896 nmol/g in the sham operation group. Myeloperoxidase (MPO) increased in liver, after intestinal I/R, to 5.16 U/g compared to 1.59 U/g in the sham operation group. MPO was also increased in lungs to 3.89 U/g compared to 1.65 U/g in the sham operation group. Pretreatment with EGCG decreased serum levels of AST and ALT to 236 and 178 IU/l, respectively. It also decreased mean MDA levels in liver and lungs to 1.061 and 1.008 nmol/g, respectively, and mean MPO levels in liver and lungs to 1.88 and 1.71 U/g, respectively. Light microscopy and transmission electron microscopy examinations showed significant alteration in liver and lungs and protection of liver and lung parenchyma in the animals treated with EGCG.  相似文献   

3.
C receptor-1 is a protein involved in the regulation of C3 and C5-convertases. Recombinant human soluble C receptor-1 has recently been produced and shown to reduce infarct size in a rat model of myocardial ischemia/reperfusion injury. The present study aimed to investigate whether recombinant human soluble C receptor-1 exerts any protective effect on pulmonary injury produced in a rodent model of adult respiratory distress syndrome. In this model, Escherichia coli endotoxin (LPS, 0.1 microgram/kg) combined with platelet-activating factor (1 pmol/kg/min over 60 min, n = 10) caused microvascular lung injury characterized by elevation of myeloperoxidase activity, deposition of C3 and C5b-9 on the endothelium of pulmonary vessels, and pulmonary edema. Furthermore, bronchoalveolar lavage revealed increased neutrophil count and elevated protein concentration. These pulmonary responses were associated with elevated serum TNF-alpha. Pretreatment (10 min, i.v.) with recombinant human soluble C receptor-1 at 10 mg/kg (n = 13), but not at 1 mg/kg, prevented the LPS/platelet-activating factor-induced pulmonary edema (p less than 0.01) and changes in the bronchoalveolar lavage fluid cell count (p less than 0.01) and protein concentration (p less than 0.05), and attenuated the deposition of C3 and C5b-9 to lung vessels. There was no effect on lung myeloperoxidase activity and serum TNF-alpha. Also, C depletion by cobra venom factor (500 U/kg, i.v.) eliminated the pulmonary edema and elevated leukocyte count in bronchoalveolar lavage fluid, but had no effect on lung myeloperoxidase activity and serum TNF-alpha. These data suggest that C factors may play an important role in the pathophysiology of adult respiratory distress syndrome.  相似文献   

4.
Lung myeloperoxidase as a measure of pulmonary leukostasis in rabbits   总被引:10,自引:0,他引:10  
Pulmonary leukostasis can be associated with acute lung injury. We studied lung peroxidase activity using myeloperoxidase (MPO) as a granulocyte marker to quantitate pulmonary leukostasis in rabbits. Lungs were homogenized in detergent, freeze-thawed, sonified, and centrifuged, and supernatants were assayed for MPO. Seven extractions were performed, and greater than 80% of cumulative MPO was found in the first three extractions. By use of a three-extraction procedure, the mean lung MPO (delta A X min-1 X g tissue-1) was determined in normal [20.9 +/- 5.2 (SE)], granulocyte-depleted (6.5 +/- 2.0), saline-injected (22.2 +/- 5.6), and pneumococcus (PNC)-challenged (69.7 +/- 10.6) animals. Lung MPO was significantly decreased in granulocyte-depleted compared with normal animals (P less than 0.005) and significantly increased in PNC-challenged compared with saline-injected animals (P less than 0.001). MPO extracted from granulocytes and lungs from normal as well as PNC-challenged animals were all biochemically identical. Lung extract did not inhibit MPO, and no MPO was detected in bronchoalveolar lavage fluid obtained from leukostatic lungs. Lung MPO significantly (P less than 0.01) correlated with intravascular intrapulmonary granulocytes. Determination of lung MPO is a relatively simple quantitative method that can be used to detect pulmonary leukostasis.  相似文献   

5.
Previous studies have shown that erythropoietin (EPO) has protective effects against ischemia/reperfusion (I/R) injury in several tissues. The aim of this study was to determine whether EPO could prevent intestinal tissue injury induced by I/R. Wistar rats were subjected to intestinal ischemia (30 min) and reperfusion (60 min). A single dose of EPO (5000 U/kg) was administered intraperitoneally at two different time points: either at five minutes before the onset of ischemia or at the onset of reperfusion. At the end of the reperfusion period, jejunum was removed for examinations. Myeloperoxidase (MPO), malondialdehyde (MDA), and antioxidant defense system were assessed by biochemical analyses. Histological evaluation was performed according to the Chiu scoring method. Endothelial nitric oxide synthase (eNOS) was demonstrated by immunohistochemistry. Apoptotic cells were determined by TUNEL staining. Compared with the sham, I/R caused intestinal tissue injury (Chiu score, 3+/-0.36 vs 0.4+/-0.24, P<0.01) and was accompanied by increases in MDA levels (0.747+/-0.076 vs 0.492+/-0.033, P<0.05), MPO activity (10.51+/-1.87 vs 4.3+/-0.45, P<0.05), intensity of eNOS immunolabelling (3+/-0.4 vs 1.3+/-0.33, P<0.05), the number of TUNEL-positive cells (20.4+/-2.6 vs 4.6+/-1.2, P<0.001), and a decrease in catalase activity (16.83+/-2.6 vs 43.15+/-4.7, P<0.01). Compared with the vehicle-treated I/R, EPO improved tissue injury; decreased the intensity of eNOS immunolabelling (1.6+/-0.24 vs 3+/-0.4, P<0.05), the number of TUNEL-positive cells (9.2+/-2.7 vs 20.4+/-2.6, P<0.01), and the high histological scores (1+/-0.51 vs 3+/-0.36, P<0.01), and increased catalase activity (42.85+/-6 vs 16.83+/-2.6, P<0.01) when given before ischemia, while it was found to have decreased the levels of MDA (0.483+/-0.025 vs 0.747+/-0.076, P<0.05) and MPO activity (3.86+/-0.76 vs 10.51+/-1.87, P<0.05), intensity of eNOS immunolabelling (1.4+/-0.24 vs 3+/-0.4, P<0.01), the number of TUNEL-positive cells (9.1+/-3 vs 20.4+/-2.6, P<0.01), and the number of high histological scores (1.16+/-0.4 vs 3+/-0.36, P<0.05) when given at the onset of reperfusion. These results demonstrate that EPO protects against intestinal I/R injury in rats by reducing oxidative stress and apoptosis. We attributed this beneficial effect to the antioxidative properties of EPO.  相似文献   

6.
This study was designed to assess the effect of a peptidoleukotriene receptor antagonist, SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 10,4353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptido-leukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 +/- 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 +/- 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 +/- 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 +/- 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 10,4353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion had no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p greater than 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

7.
We investigated the effects of tyrophostin AG 556, a tyrosine kinase inhibitor, on the phenomenon of leukocyte accumulation during ischaemia and reperfusion of the myocardium. Male anaesthetized rats were subjected to total occlusion (45 min) of the left main coronary artery followed by 5 h reperfusion (MI/R). Sham myocardial ischaemia-reperfusion rats (Sham MI/R) were used as controls. Myocardial necrosis, myocardial myeloperoxidase activity (MPO), serum creatinine phosphokinase activity (CPK) serum Tumor Necrosis Factor (TNF-alpha) and Interleukin 6 (IL-6), cardiac intercellular adhesion molecule-1 (ICAM-1) and TNF-alpha expression and myocardial contractility (left ventricle dP/dt(max)) were evaluated. Myocardial ischaemia plus reperfusion in untreated rats produced marked myocardial necrosis, increased serum CPK activity (196.5 +/- 19 U/100 ml, at the end of reperfusion) and myeloperoxidase activity (MPO, a marker of leukocyte accumulation) both in the area-at-risk (4.5 +/- 0.5 U/g/tissue) and in necrotic area (8.2 +/- 1.2 U/g/tissue), reduced myocardial contractility (1,706 +/- 52 mmHg/s, at the end of reperfusion) and induced a marked increase in the serum levels of TNF-alpha (1,950 +/- 97 pg/ml, at 1 h of reperfusion) and IL-6 (998 +/- 16 U/ml, at the end of reperfusion). Finally, myocardial ischaemia-reperfusion injury also increased cardiac mRNA for TNF-alpha and ICAM-1 in the myocardium-at risk. Tyrphostin AG 556 (0.5, 1 and 2 mg/kg subcutaneously 5 min after the onset of reperfusion) lowered myocardial necrosis and myeloperoxidase activity in the area-at-risk (1.5 +/- 0.2 U/g/tissue, following the highest dose) and in necrotic area (2.9 +/- 0.3 U/g/tissue following the highest dose), decreased serum CPK activity (96 +/- 9 U/100 ml, at the end of reperfusion), lowered serum TNF-alpha and IL-6, increased myocardial contractility (2,096 +/- 88 mmHg s, at the end of reperfusion) and reduced cardiac mRNA levels for TNF-alpha and ICAM-1. The present data suggest that tyrosine kinase inhibitors protect against myocardial ischaemia-reperfusion injury by reducing leukocyte accumulation to the ischaemic myocardium.  相似文献   

8.
Recent in vivo and in vitro work suggests that mesenchymal stem cells (MSC) have anti-inflammatory properties. In this study, we tested the effect of administering MSC directly into the airspaces of the lung 4 h after the intrapulmonary administration of Escherichia coli endotoxin (5 mg/kg). MSC increased survival compared with PBS-treated control mice at 48 h (80 vs 42%; p < 0.01). There was also a significant decrease in excess lung water, a measure of pulmonary edema (145 +/- 50 vs 87 +/- 20 microl; p < 0.01), and bronchoalveolar lavage protein, a measure of endothelial and alveolar epithelial permeability (3.1 +/- 0.4 vs 2.2 +/- 0.8 mg/ml; p < 0.01), in the MSC-treated mice. These protective effects were not replicated by the use of further controls including fibroblasts and apoptotic MSC. The beneficial effect of MSC was independent of the ability of the cells to engraft in the lung and was not related to clearance of the endotoxin by the MSC. MSC administration mediated a down-regulation of proinflammatory responses to endotoxin (reducing TNF-alpha and MIP-2 in the bronchoalveolar lavage and plasma) while increasing the anti-inflammatory cytokine IL-10. In vitro coculture studies of MSC with alveolar macrophages provided evidence that the anti-inflammatory effect was paracrine and was not cell contact dependent. In conclusion, treatment with intrapulmonary MSC markedly decreases the severity of endotoxin-induced acute lung injury and improves survival in mice.  相似文献   

9.
This study was designed to investigate the effect of L-carnitine in ischaemia and reperfusion of the rat kidney. Rats were randomly allocated into three groups. Group I (control group; n = 6) received no treatment. Group II (isotonic saline group; n = 6), received 2 ml of isotonic saline 15 min before the renal ischaemia, and group III (carnitine group; n = 6) received L-carnitine hydrochloride (100 mg kg(-1)) intraperitoneally. At the end of the reperfusion period, rats were sacrificed. Tissue malondialdehyde level (MDA), myeloperoxidase (MPO) activity, and nitrite/nitrate (NO) level of renal tissue were measured to evaluate the lipid peroxidation, neutrophil function, and nitric oxide metabolism, respectively. The tissue levels of MDA, MPO and NO were lower in group III (71.8 +/- 8.4, 172.1 +/- 27.4 U g(-1) tissue, 76.3 +/- 29.7 micromol l(-1) respectively) than levels in groups I (103.4 +/- 13.4 nmol g(-1), 325.9 +/- 20.2 U g(-1) tissue, 144.5 +/- 39.2 micromol l(-1), respectively) and II (103.5 +/- 11.4 nmol g(-1), 317.1 +/- 41.5 U g(-1) tissue, 148.9 +/- 23.9 micromol l(-1), respectively). It is shown that carnitine protects kidney tissue against ischaemia-reperfusion injury.  相似文献   

10.
The objective of this study was to investigate antioxidant and cytoprotective properties of iloprost in a distant organ after ischaemia reperfusion injury. Male Wistar rats were divided into two groups. After application of anesthaesia both hindlimbs were occluded. A 2-h reperfusion procedure was carried out after 60 min of ischemia. Study group (STU) rats (n=10) received 10 microg kg(-1) iloprost in 1 ml of saline from the tail vein 10 min before reperfusion. Control (CON) group rats (n=10) received an equal amount of saline. The rats were sacrificed by injection of a high dose of thiopentone sodium. Blood and tissue samples (right kidneys) were taken for analysis. Differences in malondialdehyde (MDA), myeloperoxidase (MPO), Na+-K+ ATPase and total antioxidant capacity (TAC) between the groups were analysed. MPO, MDA and TAC levels in the sera of CON and STU groups were 1.60+/-0.26 U l(-1), 11.42+/-5.23 nmol ml(-1), 8.30 x 10(-2)+/- 3.93 x 10(-2) nmol ml(-1) h(-1) and 1.07+/-0.11 U l(-1), 7.60+/-1.81 nmol ml(-1) and 0.15+/-3.23 x 10(-2) nmol ml(-1) h(-1) (p=0.0001, p=0.043 and p=0.0001 respectively). MPO, ATPase and MDA levels in kidneys for CON and STU groups were 1.24+/-0.58 U g(-1), 85.70+/-52.05 nmol mg(-1), 17.90+/-7.40 nmol ml(-1) and 0.78+/-0.31 U g(-1), 195.90+/-56.13 nmol mg(-1) and 10.10+/-0.99 nmol ml(-1) (p=0.046, p=0.0001 and p=0.009 respectively). When given prior to reperfusion, the positive effect of iloprost in the attenuation of distant organ reperfusion injury has been demonstrated.  相似文献   

11.
The efficacy of human extracellular-superoxide dismutase type C (EC-SOD C) to limit infarct size after ischemia and reperfusion was explored and compared to that of EC-SOD C combined with catalase (CAT) and to that of CAT alone. EC-SOD C binds to heparan sulphate proteoglycan on the cell surfaces. Thirty-two pigs were subjected to 45 min of myocardial ischemia followed by 4 h of reperfusion. Control pigs (group A; n = 8) received 300 mL of saline into the great cardiac vein during a 30-min period started 5 min prior to reperfusion; pigs in group B (EC-SOD C; n = 8) got 16.6 mg of EC-SOD C; pigs in group C (EC-SOD C + CAT; n = 8) got 16.6 mg of EC-SOD C together with 150 mg of CAT. Pigs in group D (CAT; n = 8) received 150 mg of CAT. In groups B, C, and D, the drug was dissolved in saline and infused into the great cardiac. Infarct size expressed as percent of area at risk was smaller in groups B (14.5 +/- 16.7%) and C (40.8 +/- 13.3%) than in groups A (78.8 +/- 8.6%) and D (67.2 +/- 18.6%; p less than .05). Creatine kinase (CK) activity in ischemic myocardium was higher in groups B (1740 +/- 548 U/g) and C (1729 +/- 358 U/g) than in groups A (1184 +/- 237 U/g) and D (1251 +/- 434 U/g; p less than .05). There was an inverse relation (r = -.83) between infarct size and CK content. The EC-SOD C infusions resulted in only minimal increases in plasma SOD activities. In conclusion, the presence of SOD on the cell surfaces is of importance in the prevention of reperfusion injury rather than circulating SOD.  相似文献   

12.
The damaging effects of intestinal ischemia-reperfusion (I/R) on the gut and remote organs can be attenuated by subjecting the intestine to a prior, less severe I/R insult, a process known as preconditioning. Because intestines of hibernating ground squirrels experience repeated cycles of hypoperfusion and reperfusion, we examined whether hibernation serves as a model for natural preconditioning against I/R-induced injury. We induced intestinal I/R in either the entire gut or in isolated intestinal loops using rats, summer ground squirrels, and hibernating squirrels during natural interbout arousals (IBA; body temperature 37-39 degrees C). In both models, I/R induced less mucosal damage in IBA squirrels than in summer squirrels or rats. Superior mesenteric artery I/R increased MPO activity in the gut mucosa and lung of rats and summer squirrels and the liver of rats but had no effect in IBA squirrels. I/R in isolated loops increased luminal albumin levels, suggesting increased gut permeability in rats and summer squirrels but not IBA squirrels. The results suggest that the hibernation phenotype is associated with natural protection against intestinal I/R injury.  相似文献   

13.
The underlying mechanisms of lung endothelial injury after intestinal ischemia-reperfusion (I/R) injury are not fully known. Here we investigated the effects of posttreatment with a neutrophil elastase inhibitor (NEI; ONO-5046) on lung injury after intestinal I/R injury in a rat model. Intestinal I/R was produced by 90 min of ischemia followed by either 60 or 240 min of reperfusion. For all experimental groups, the endothelial permeability index increased, neutrophil H(2)O(2) production increased in the pulmonary vasculature blood, neutrophil counts increased in bronchoalveolar lavage fluid (BALF), and the cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-3 levels were increased in BALF after 240 min (P < 0.01). In rats treated with NEI from 60 min after reperfusion, the lung endothelial permeability index was significantly reduced (P < 0.05), whereas neutrophil H(2)O(2) production in pulmonary vasculature blood and neutrophil count in BALF were significantly suppressed by NEI (P < 0.05 and P < 0.01, respectively). In addition, NEI significantly suppressed the increase of CINC-1 and CINC-3 levels in BALF (P < 0.05). Our study clearly indicates that posttreatment with NEI reduces neutrophil activation in the pulmonary vessels and neutrophil accumulation in the lungs and suggests that ONO-5046, even when administered after the primary intestinal insult, can prevent the progression of lung injury associated with intestinal I/R.  相似文献   

14.
Because leukotrienes and prostaglandins are inflammatory mediators derived from arachidonic acid, their potential role in oleic acid-induced lung injury was evaluated in control and in essential fatty acid-deficient (EFAD) rats depleted of arachidonic acid substrate. In control rats, oleic acid (0.06 ml/kg iv) increased the pulmonary permeability index (measured by scintigraphy) from -10 +/- 13 x 10(-6) s-1 to 217 +/- 20 x 10(-6) s-1 and 118 +/- 13 x 10(-6) s-1 at 5 and 50 min (P less than 0.05), respectively. It also caused arterial hypoxemia at 30 min (P less than 0.05). Compared with saline controls, oleic acid increased bronchoalveolar lavage fluid levels of immunoreactive (i) LTC4/D4, iLTB4, (P less than 0.01), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) (P less than 0.05). In EFAD rats, oleic acid failed to significantly increase the lung permeability index at 5 and 50 min. In contrast to control rats, oleic acid failed to cause hypoxemia in the EFAD rats. Bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha after oleic acid in EFAD rats were lower compared with oleic acid controls, whereas iLTC4/D4 in the oleic acid EFAD group was not decreased. Treatment with intraperitoneal ethyl arachidonate (400 mg over 2 wk) reversed the resistance of EFAD rats such that the pulmonary edema (P less than 0.05) was evident after oleic acid. This latter group also manifested a significant (P less than 0.05) rise in the bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha. These results suggest that arachidonic acid metabolites contribute to oleic acid-induced pulmonary permeability.  相似文献   

15.
目的:研究褪黑素(Melatonin,Mel)在肺缺血再灌注损伤中的作用,明确沉默信息调控因子1(Silent information regulator 1,SIRT1)信号通路在这一过程中的关键作用。方法:建立大鼠肺缺血再灌注损伤(IR)模型,实验分为Control、IR、IR+10 mg/Kg Mel、IR+20 mg/Kg Mel、IR+30 mg/Kg Mel五组,通过检测支气管肺泡灌洗液中白细胞数目、蛋白含量和肺组织中丙二醛(MDA)水平、干湿重比等指标明确肺组织损伤程度,Western blot检测SIRT1通路相关分子及凋亡相关蛋白的表达水平,研究其作用机制。结果:与IR组相比,Mel处理显著降低了支气管肺泡灌洗液中白细胞数量、蛋白含量和肺组织MDA含量、干湿重比(P0.05);Mel还显著上调了SIRT1表达,降低了Ac-FOXO1表达(P0.05);此外,Mel显著提高了抗凋亡蛋白Bcl-2表达,下调了凋亡蛋白Bax表达(P0.05)。结论:Mel具有明确的抗肺缺血再灌注损伤的作用,SIRT1信号通路在该过程中可能扮演重要角色。  相似文献   

16.
Inducible nitric oxide synthase (iNOS) contributes importantly to septic pulmonary protein leak in mice with septic acute lung injury (ALI). However, the role of alveolar macrophage (AM) iNOS in septic ALI is not known. Thus we assessed the specific effects of AM iNOS in murine septic ALI through selective AM depletion (via intratracheal instillation of clodronate liposomes) and subsequent AM reconstitution (via intratracheal instillation of donor iNOS+/+ or iNOS-/- AM). Sepsis was induced by cecal ligation and perforation, and ALI was assessed at 4 h: protein leak by the Evans blue (EB) dye method, neutrophil infiltration via myeloperoxidase (MPO) activity, and pulmonary iNOS mRNA expression via RT-PCR. In iNOS+/+ mice, AM depletion attenuated the sepsis-induced increases in pulmonary microvascular protein leak (0.3 +/- 0.1 vs. 1.4 +/- 0.1 microg EB.g lung(-1).min(-1); P < 0.05) and MPO activity (37 +/- 4 vs. 67 +/- 8 U/g lung; P < 0.05) compared with that shown in non-AM-depleted mice. In AM-depleted iNOS+/+ mice, septic pulmonary protein leak was restored by AM reconstitution with iNOS+/+ AM (0.9 +/- 0.3 microg EB.g lung(-1).min(-1)) but not with iNOS-/- donor AM. In iNOS-/- mice, sepsis did not induce pulmonary protein leak or iNOS mRNA expression, despite increased pulmonary MPO activity. However, AM depletion in iNOS-/- mice and subsequent reconstitution with iNOS+/+ donor AM resulted in significant sepsis-induced pulmonary protein leak and iNOS expression. Septic pulmonary MPO levels were similar in all AM-reconstituted groups. Thus septic pulmonary protein leak is absolutely dependent on the presence of functional AM and specifically on iNOS in AM. AM iNOS-dependent pulmonary protein leak was not mediated through changes in pulmonary neutrophil influx.  相似文献   

17.
Although c-Jun NH(2)-terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-kappaB-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4 degrees C for 4 h followed by reperfusion at 37 degrees C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-kappaB qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-alpha into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation.  相似文献   

18.
The efficacy of recombinant human extracellular-superoxide dismutase type C (EC-SOD C) on myocardial reperfusion injury was explored in hypothermically arrested rat hearts, as was its site of action. Forty isolated working rat hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion. The hearts were arrested by the administration of 10 mL of cold perfusate at the onset of ischemia. At the same time, they were randomly assigned to one of five groups; A: cold perfusate only; B: cold perfusate + EC-SOD C 10.4 mg/L (30,000 U/L); C: cold perfusate+bovine CuZn-SOD 7.5 mg/L (30,000 U/L); D: cold perfusate + EC-SOD C 10.4 mg/L + heparin 50,000U/L; E: cold perfusate + heparin 50,000 U/L. Heparin was given to prevent binding of EC-SOD C to endothelial cell surfaces. Left ventricular function was studied before ischemia and at the end of reperfusion. Percent recovery of maximal left ventricular dP/dt after reperfusion was more pronounced in group B (109 +/- 24%; p less than .05) than in groups A (42 +/- 40%), C (47 +/- 36%), D (44 +/- 33%) and E (58 +/- 25%). Likewise, percent recovery of the double product (heart rate x systolic left ventricular pressure) was better in group B (104 +/- 18%; p less than .05) than in the other groups (A: 47 +/- 37%, C: 49 +/- 36%, D: 50 +/- 35%, E: 69 +/- 31%). Compared to the preischemic level, creatine kinase increased significantly in the coronary effluent after reperfusion in groups A, C, D, and E, but not in group B. The results suggest that EC-SOD C, which attaches to the endothelial cell surfaces, might be particularly effective as protection against myocardial reperfusion injury when given together with cardioplegic solution.  相似文献   

19.
Body temperature is precisely regulated to maintain homeostasis in homeothermic animals. Although it remains unproved whether change of body temperature constitutes a beneficial or a detrimental component of the septic response, temperature control should be an important entity in septic experiments. We investigated the effect of body temperature control on the lipopolysaccharide (LPS)-induced lung injury. Acute lung injury in rats was induced by intratracheal spray of LPS and body temperature was either clamped at 37 degrees C for 5 hours or not controlled. The severity of lung injury was evaluated at the end of the experiment. Intratracheal administration of aerosolized LPS caused a persistent decline in body temperature and a significant lung injury as indicated by an elevation of protein-concentration and LDH activity in the bronchoalveolar lavage (BAL) fluid and wet/dry weight (W/D) ratio of lungs. Administration of LPS also caused neutrophil sequestration and lipid peroxidation in the lung tissue as indicated by increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) production, respectively. Control of body temperature at 37 degrees C after LPS (LPS/BT37, n = 11) significantly reduced acute lung injury as evidenced by decreases in BAL fluid protein concentration (983 +/- 189 vs. 1403 +/- 155 mg/L) and LDH activity (56 +/- 10 vs. 123 +/- 17 deltamAbs/min) compared with the LPS group (n = 11). Although the W/D ratio of lung and MDA level were lower in the rats received temperature control compared with those received LPS only, the differences were not statistically significant. Our results demonstrated that intratracheal administration of aerosolized LPS induced a hypothermic response and acute lung injury in rats and controlling body temperature at a normal range may alleviate the LPS-induced lung injury.  相似文献   

20.
Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号