首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

3.
In this report, we have shown that the standard laboratory diet administered to Psammomys obesus (sand rat) from Beni Abbes in Algeria, induced a non-insulin dependant diabetes, characterised by increase of body weight (p<0.001) as well as hyperinsulinemia, hyperglycemia and hypercholesterolemia. In cultured aortic smooth muscle cells (SMC) of sand rats, type I and type III collagen biosynthesis and insulin effects, at low dose, on these parameters were investigated. In all experimental conditions of cultured SMC study, The α chains of type I collagen were analysed by immunoblotting in media and cells.Metabolic radiolabelling and Immunochemical procedures revealed that, in diabetic state, synthetic SMC (SMCs) actively produce type I and III collagen which are synthesised in the cells and secreted in the medium; type I collagen was predominant as compared with type III collagen. Diabetes enhanced the collagen synthesis. Low dose of Insulin added to the medium, during 48h of incubation, induced a marked reduction in the synthesis of collagen types, especially type I collagen.  相似文献   

4.
Collagen synthesis was monitored in cultures of rabbit arterial smooth muscle cells (SMC). Both the rate of collagen synthesis per cell and collagen synthesis as a percent of total protein synthesis were measured at specific intervals from 1 to 14 days after inoculation of smooth muscle cells. The proportions of types I and III collagen present in the conditioned incubation medium and in the cell layer were also examined. After inoculation the cells displayed population expansion typical of SMC in which growth slowed but did not cease after the cells attained confluence. Collagen synthesis rates, expressed as [14C]hydroxyproline per cell, were eight-fold higher in preconfluent cells. In these cultures collagen accounted for more than 20% of the newly synthesized, 14C-labeled protein present as trichloroacetic acid (TCA)-insoluble material in 24 h culture media. In post-confluent cultures, this percentage was reduced to about 7% of the total protein synthesized. Synthesis rates of both collagen and non-collagen protein decreased with increasing time after inoculation. However, the rate of decline of collagen synthesis was three times greater than that seen for non-collagen protein. Early cultures synthesized relatively more type I than type III procollagen. The type I to type III ratio was highest at day 3 and declined after that time to day 14. While the synthesis of both types decreased with increasing age, type I declined at a greater rate resulting in a predominance of type III procollagen secretion by older cultures. We conclude that protein synthesis in general and collagen synthesis in particular are quantitatively and qualitatively dependent upon the growth stage of SMC in vitro.  相似文献   

5.
The effects of heparin (180 micrograms/ml) on steady state mRNA levels for fibronectin, thrombospondin, actin and collagen types I and III were investigated in human umbilical artery smooth muscle cells. Heparin caused a 120% increase in thrombospondin mRNA levels and a 60% and 180% increase in the mRNA levels of procollagen chains alpha 2(I) and alpha 1(III), respectively. No change in fibronectin or actin mRNA levels resulted from heparin treatment. We reported earlier (Biochem. Biophys. Res. Comm. 148:1264, 1987) that heparin increases smooth muscle cell synthesis of both fibronectin and thrombospondin. These data show that heparin coordinately regulates thrombospondin mRNA and protein levels. The heparin induced increase in fibronectin biosynthesis apparently reflects control at the translational or post-translational level.  相似文献   

6.
J M Burke  G Balian  R Ross  P Bornstein 《Biochemistry》1977,16(14):3243-3249
Analysis of pepsin-resistant proteins produced in culture by monkey aortic smooth muscle cells (SMC) indicates the synthesis of types I and III collagen. As determined by carboxymethylcellulose chromatography and disc gel electrophoresis, SMC cultures synthesize more type III collagen than monkey skin fibroblast cultures; aortic adventitial cell cultures (a mixture of SMC and fibroblasts) synthesize an intermediate amount of type III collagen. Both types I and III procollagens can also be isolated from the culture medium of SMC and skin fibroblasts. The procollagens were separated by diethylaminoethylcellulose (DEAE-cellulose) chromatography in identified by electrophoresis and after cleavage with pepsin and cyanogen bromide. Quantitation of the procollagen by DEAE-cellulose chromatography suggests that 68% of the SMC procollagens and less than 10% of the skin fibroblast procollagens are type III. On the other hand, estimation of the proportions of collagen types secreted by cells, employing pepsin digestion of cell culture medium at 15 degrees C, leads to an underestimation of the amount of type III collagen relative to type I. SMC and fibroblasts may differ in their ability to convert type I procollagen to collagen ad indicated by the observation that skin fibroblast culture medium contains both pN and pC collagen intermediates after 24 h, while cultures of SMC essentially lack the pC collagen intermediates.  相似文献   

7.
8.
Ascorbate supplementation of cultured fetal calf aortic smooth muscle cells leads to increased deposition of extracellular matrix proteins and stimulation of cellular protein synthesis (E. Schwartz et al., J cell biol 92 (1983) 462) [7]. In the present study, we have investigated this phenomenon at the level of gene expression. Cells were grown for three weeks on tissue culture plastic with or without ascorbate (50 micrograms/ml). When compared to controls, cells grown in presence of ascorbate had twice as much poly(A+) RNA per microgram of total RNA, and ascorbate led to a 50% increase in [35S]methionine incorporation when the total RNA was translated in the reticulocyte lysate system. SDS-PAGE revealed no change in the protein pattern under the two conditions. "Northern" hybridization revealed a two- to fivefold increase in the sequence content of beta-actin, alpha-tubulin and type I pro alpha 1-collagen in total RNA of ascorbate-supplemented cells, but no difference was observed in the mRNA sequence content for the three specific proteins when equal amounts of poly(A+) RNA from ascorbate and control cells were hybridized with the three cloned cDNAs. To evaluate the effect of an exogenous matrix, cells were also plated on collagen gels. RNA isolated from cells grown on collagen without added ascorbate exhibited translational activity and mRNA sequence content similar to cells grown with ascorbate on tissue culture plastic. In contrast, no differences from controls were found in cells grown for one week in the presence of ascorbate, at which time no significant deposition of collagen occurs in the extracellular matrix. These results suggest that the stimulation in protein synthesis in fetal calf smooth muscle cells supplemented with ascorbate is associated with an increase in the proportion of poly(A+) RNA in the total RNA pool, and that the production of an endogenous collagen-rich matrix in the presence of ascorbate may be the basis for these pretranslational changes.  相似文献   

9.
Treatment with the lipid second messenger, ceramide, activates extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun N-terminal kinase, and p38 in human skin fibroblasts and induces their collagenase-1 expression (Reunanen, N., Westermarck, J., H?kkinen, L., Holmstr?m, T. H., Elo, I., Eriksson, J. E., and K?h?ri, V.-M. (1998) J. Biol. Chem. 273, 5137-5145). Here we show that C(2)-ceramide inhibits expression of type I and III collagen mRNAs in dermal fibroblasts, suppresses proalpha2(I) collagen promoter activity, and reduces stability of type I collagen mRNAs. The down-regulatory effect of C(2)-ceramide on type I collagen mRNA levels was abrogated by protein kinase C inhibitors H7, staurosporine, and Ro-31-8220 and potently inhibited by a combination of MEK1,2 inhibitor PD98059 and p38 inhibitor SB203580. Activation of ERK1/2 by adenovirus-mediated expression of constitutively active MEK1 resulted in marked down-regulation of type I collagen mRNA levels and production in fibroblasts, whereas activation of p38 by constitutively active MAPK kinase-3b and MAPK kinase-6b slightly up-regulated type I collagen expression. These results identify the ERK1/2 signaling cascade as a potent negative regulatory pathway with respect to type I collagen expression in fibroblasts, suggesting that it mediates inhibition of collagen production in response to mitogenic stimulation and transformation.  相似文献   

10.
Hypertension can increase mechanical stretch on the vessel wall, an important stimulus that induces collagen remodeling. Prolyl-4-hydroxylaseα1 (P4Hα1) and matrix metalloproteinases (MMPs) are essential for collagen synthesis and degradation. However, the effect of mechanical strain and collagen synthesis remains largely unknown. This study aimed to identify the effect of stretch on MMPs and P4Hα1 and the involved signaling pathways. Human aortic smooth muscle cells (HASMCs) were stimulated with mechanical stretch (0, 10% and 18% strain), and production of P4Hα1 as well as production and gelatinolytic activity of MMP-2 was force-dependently increased. Mechanical stretch at 18% also increased the expression of type I and III collagen and the phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). MMP-2 production and activity enhanced by 18% stretch were inhibited by the PI3K/Akt inhibitor LY294002. Blockade of p38 MAPK or JNK inhibited the promoting effect of stretch on P4Hα1. The in vivo model of aortic banding showed increased protein levels of MMP-2, P4Hα1 and collagen I and III in the aorta. Thus, mechanical stretch increased MMP-2 and P4Hα1 expression in HASMCs via AKT-P38 MAPK-JNK signaling, thereby inducing vascular remodeling.  相似文献   

11.
12.
Dimethylnitrosamine (DMN)-induced hepatic fibrosis was used as an experimental model to study collagen-gene expression during liver fibrogenesis. Increase in the concentrations of the mRNAs for type I, III, and IV collagens was found to be an early event in the development of hepatic fibrosis, as the mRNAs for all three collagen types showed a definite increasing tendency by day 7 of DMN treatment. Prolyl 4-hydroxylase (EC 1.14.11.2) and galactosylhydroxylysyl glucosyltransferase (EC 2.4.1.66) activities were also distinctly elevated at this stage, whereas no increase could be detected in the liver collagen content. The increase in the mRNAs for type I collagen was the smallest and that for type IV collagen the greatest at all the time points studied. The relative concentrations of the mRNAs for the three collagen types on day 21 of DMN treatment were 350% of the control mean for type I collagen, 490% for type III and 660% for type IV. The data further indicate that the proportions of the mRNAs for the three collagen types are 1.0:0.9:0.2 in normal rat liver, 1.0:1.4:0.8 on day 14 of DMN treatment, and 1.0:1.3:0.5 on day 21. The early marked increase in the mRNA for type IV collagen suggests that enhanced production of basement-membrane collagen may be an early event in the development of hepatic fibrosis.  相似文献   

13.
Collagen synthesis and procollagen mRNA levels were determined and compared in (1) sparse, rapidly proliferating smooth muscle cells (SMC); (2) postconfluent, density-arrested SMC; and (3) sparse, nonproliferating (mitogen-deprived) rabbit arterial SMC. Collagen synthesis per SMC was decreased by 70% in postconfluent versus proliferating cells. However, relative collagen synthesis, expressed as the percentage of total protein synthesis, increased from 3.7% in sparse cultures to approximately 7% in postconfluent cultures. Slot blot analyses demonstrated that the relative steady state alpha 1(I) and alpha 1(III) procollagen mRNA levels were also increased in postconfluent cultures when compared to sparse cultures. As with collagen synthesis per cell, the mRNA levels per cell for types I and III procollagen in postconfluent cells, determined by densitometry of blots, were likewise approximately half that found in sparse, proliferating cells. In a separate study to determine if cell-cell contact was necessary for eliciting these changes in collagen synthesis, we determined collagen synthesis in mitogen-deprived and proliferating SMC cultures at low density. Mitogen-deprived cultures synthesized only 10% the amount of collagen produced (per cell) by proliferating cultures in 10% fetal bovine serum. Relative collagen synthesis in proliferating and nonproliferating cultures was 5.0 and 8.3%, respectively. These results demonstrate elevated collagen synthesis, per cell, by proliferating cultures compared with nonproliferating cultures, regardless of whether cells were rendered quiescent by density arrest or by mitogen deprivation. Results also suggest a pretranslational mechanism for the regulation of collagen synthesis in rabbit aortic smooth muscle cells.  相似文献   

14.
Ultrastructural and biochemical studies were carried out on bovine aortic smooth muscle cells cultured in the presence or absence of ascorbate. In its absence, electron microscopic examination of cultures revealed that the extracellular components consisted primarily of microfibrils. Morphologically identifiable collagen fibrils were only observed in the matrix upon ascorbate supplementation. Smooth muscle cells grown in ascorbate-free media synthesized large amounts of type VI collagen. The identity of the latter was confirmed by ion exchange chromatography, slab gel electrophoresis, and amino acid analysis. Addition of ascorbate resulted in a stimulation of type I collagen production, levels of the type III remained constant, and types V and VI were decreased. Since, in the absence of ascorbate, smooth muscle cells are known to synthesize predominantly elastin, the present data support the contention that the type VI collagen and the microfibrillar component of elastic tissue are either identical or similar.  相似文献   

15.
We have isolated a partial cDNA for alpha 1(XI) collagen from a bovine smooth muscle cell (SMC) library. Previously, this collagen was not known to be expressed in SMCs. Comparison of the nucleotide and deduced amino acid sequence of the 2.7-kilobase bovine clone and the human alpha 1(XI) sequence indicates 92 and 98% homology, respectively. Bovine SMCs in culture were found to produce alpha 1(XI) mRNA. However, alpha 2(XI) and alpha 1(II) collagen RNA were not detectable; therefore, SMCs cannot synthesize the same type XI collagen as found in cartilage. Since type XI collagen is structurally related to type V collagen, the expression of alpha 1(XI) and alpha 2(V) collagen mRNA in SMCs was characterized. Levels of alpha 1(XI) and alpha 2(V) collagen mRNAs were low in exponentially growing SMCs and increased 3-4-fold as cells became confluent. Increased mRNA levels were also observed when exponentially growing subconfluent SMCs were incubated in medium containing 0.5% fetal bovine serum for 24 h, similar to the effects of serum deprivation on the expression of types I and III collagen genes (Kindy, M. S., Chang, C.-J., and Sonenshein, G. E. (1988) J. Biol. Chem. 263, 11426-11430). However, as cell density increased, serum deprivation resulted in very different responses for these collagen genes. Serum deprivation caused a decrease in expression of alpha 1(XI) and alpha 2(V) collagen mRNAs in cultures as they approached confluence. In contrast, at confluence alpha 1(I) and alpha 2(I) mRNA levels no longer responded to serum concentration whereas expression of alpha 1(III) mRNA remained inducible by serum deprivation. These results suggest concerted regulation of alpha 1(XI) and alpha 2(V) collagen gene expression, which is distinct from that for the chains of type I and type III collagen with respect to cell density and serum.  相似文献   

16.
Type V collagen selectively inhibits human endothelial cell proliferation   总被引:3,自引:0,他引:3  
Type V collagen from human placenta remarkably inhibited human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner when coated on the culture dishes. Other types of collagen (I, III, IV) and fibronectin enhanced HUVEC proliferation under the same conditions. The inhibitory activity of type V collagen was seen not only when it was coated on the dishes, but also when it was directly added into cell culture. The attachment effect of type V collagen did not differ from that of type I collagen. The inhibitory activity is a phenomenon selective for endothelial cells, since type V collagen did not affect the proliferation of human umbilical vein smooth muscle cells, aortic smooth muscle cells, or nasal mucosa fibroblasts.  相似文献   

17.
18.
Collagen synthesis is a major function of human intestinal smooth muscle (HISM) cells and contributes to intestinal fibrosis in chronic inflammatory bowel disease. As an extension of previous in vitro studies of the role of heparin in regulating HISM cell proliferation and collagen synthesis, the effect of protamine sulfate was studied. Protamine decreased collagen production by 50% in confluent and proliferating cultures. This effect was concentration-dependent and was selective for collagen in that neither noncollagen production nor DNA accumulation in the culture plates was affected. Other human mesenchymal cells which produce collagen, such as dermal fibroblasts and aortic smooth muscle cells, responded to protamine in a similar fashion. Protamine has a strong cationic charge and is rich in lysine and arginine. To determine which of these properties was important in decreasing collagen production, the effect of protamine was compared to that of other polyionic compounds. Poly-L-lysine decreased collagen production to a lesser degree than protamine. Poly-L-arginine was toxic to the cells. Poly-L-glutamic acid, which has an opposite charge to protamine, had no effect. These findings suggest that both the number and the arrangement of lysyl residues, in addition to positive charge, are important. Binding assays demonstrated that protamine did not inhibit collagen production by binding to ascorbate in the culture medium. Electrophoretic separation and chromatography of collagen types expressed following protamine treatment showed that the ratio of type I to type III collagen remained 2:1. This observation suggests that suppression of collagen production is not specific to a particular collagen type. The selective inhibition of collagen production by protamine provides an important tool to study the regulation of collagen production in human cells and may also provide potential therapy of fibrotic disorders.  相似文献   

19.
A complementary DNA (cDNA) clone was constructed for chick pro alpha 2(I) collagen mRNA. This and previously constructed cDNA clones for chick and human pro alpha 1(I) collagen mRNAs were used to measure levels of type I procollagen messenger RNAs in two experimental models: viscose cellulose sponge-induced experimental granulation tissue and silica-induced experimental lung fibrosis in rats. Both Northern RNA blot and RNA dot hybridizations were used to quantitate procollagen mRNAs during formation of granulation tissue. The period of rapid collagen synthesis was characterized by high levels of procollagen mRNAs, which were reduced when collagen production returned to a low basal level. The rate of collagen synthesis and the levels of procollagen mRNAs during the period of rapid reduction in collagen production did not, however, parallel with each other. This suggests that translational control mechanisms are important during this time in preventing overproduction of collagen. In silicotic lungs, the early stages of fibroblast activation follow a similar path but appear faster. At a later stage, however, the RNA levels increase again and permit collagen synthesis to continue at a high rate, resulting in massive collagen accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号