首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantal release of serotonin   总被引:12,自引:0,他引:12  
Bruns D  Riedel D  Klingauf J  Jahn R 《Neuron》2000,28(1):205-220
We have studied the origin of quantal variability for small synaptic vesicles (SSVs) and large dense-cored vesicles (LDCVs). As a model, we used serotonergic Retzius neurons of leech that allow for combined amperometrical and morphological analyses of quantal transmitter release. We find that the transmitter amount released by a SSV varies proportionally to the volume of the vesicle, suggesting that serotonin is stored at a constant intravesicular concentration and is completely discharged during exocytosis. Transmitter discharge from LDCVs shows a higher degree of variability than is expected from their size distribution, and bulk release from LDCVs is slower than release from SSVs. On average, differences in the transmitter amount released from SSVs and LDCVs are proportional to the size differences of the organelles, suggesting that transmitter is stored at similar concentrations in SSVs and LDCVs.  相似文献   

2.
To what extent the quantal hypothesis of transmitter release applies to dense-core vesicle (DCV) secretion is unknown. We determined the characteristics of individual secretory events in calf chromaffin cells using catecholamine amperometry combined with different patterns of stimulation. Raising the frequency of action potential trains from 0.25-10 Hz in 2 mM [Ca(2+)]o or [Ca(2+)]o from 0.25-7 mM at 7 Hz elevated the amount released per event (quantal size). With increased stimulation, quantal size rose continuously, not abruptly, suggesting that release efficiency from a single population of DCVs rather than recruitment of different-sized vesicles contributed to the effect. These results suggest that catecholamine secretion does not conform to the quantal model. Inhibition of rapid endocytosis damped secretion in successive episodes, implying an essential role for this process in the recycling of vesicles needed for continuous secretion.  相似文献   

3.
Here we analyze the problem of determining whether experimentally measured spontaneous miniature end-plate currents (MEPCs) indicate that quanta are composed of subunits. The properties of MEPCs at end plates with or without secondary clefts at the neuromuscular junction are investigated, using both stochastic and deterministic models of the action of a quantum of transmitter. It is shown that as the amount of transmitter in a quantum is increased above about 4000 acetylcholine (ACh) molecules there is a linear increase in the size of the MEPC. It is possible to then use amplitude-frequency histograms of such MEPCs to detect a subunit structure, as there is little potentiation effect above 4000 ACh molecules. Autocorrelation and power spectral analyses of such histograms establish that their subunit structure can be detected if the coefficient of variation of the subunit size is less than about 0.12 or, if electrical noise is added, about 0.1. Positive gradients relate the rise time and half-decay times of MEPCs to their amplitude, even in the absence of potentiating effects; these gradients are shallower at motor nerve terminals that possess secondary clefts. The effect of asynchronous release of subunits is also investigated. The criteria determined by this analysis for identifying a subunit composition in the quantum are applied to an amplitude-frequency histogram of MEPCs recorded from a small group of active zones at a visualized amphibian motor-nerve terminal. This did not provide evidence for a subunit structure.  相似文献   

4.
Inhibition of packing of acetylcholine into quanta by ammonium   总被引:3,自引:0,他引:3  
Soaking frog motor nerve terminals in a hypertonic solution produces an increase in the size of miniature end plate potentials (mepp's) and miniature end plate currents (mepc's) after the preparations are returned to normal Ringer's solution. There is substantial evidence that the size increase occurs because additional acetylcholine (ACh+) is incorporated into the quanta. It has been proposed that ACh+ loading into synaptic vesicles requires a proton gradient. As a step in testing this hypothesis the effects of millimolar concentrations of NH4+, methylamine+, or trimethylamine+ in the extracellular solution on the increase in quantal size were measured. These substances would be expected to accumulate in acid intracellular compartments, which would diminish the acidity. The increase in quantal size was blocked by these substances, in agreement with the idea that the proton gradient is involved in ACh+ accumulation. Tetanic stimulation in solutions containing 5 mM NH4Cl also produces a decrease in quantal size, not seen in controls in NH4+-free solution. The inhibition of transmitter packaging by ammonia may play a role in the neural sequelae of hepatic failure.  相似文献   

5.
Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.  相似文献   

6.
The release of acetylcholine: from a cellular towards a molecular mechanism   总被引:3,自引:0,他引:3  
The isolation of synaptic vesicles rich in acetylcholine (ACh) from the electric organ of Torpedo has indeed strengthened the hypothesis of transmitter exocytosis, but soon after it was found that non-vesicular free ACh was released and renewed upon stimulation. In contrast, vesicular ACh and the number of vesicles remained stable during physiological stimulations. In addition free ACh variations (representing the cytoplasmic pool) were correlated to the release kinetics as measured by the electroplaque discharge. Consequently, the mechanism releasing ACh from the cytoplasm in a packet form was searched at the presynaptic membrane itself. With synaptosomes isolated from the electric organ of Torpedo, it became possible to freeze them rapidly at the peak of ACh release and study their membrane and contents after cryofracture. A statistical analysis showed that the main structural change was the occurrence of large intramembrane particles at the peak of ACh release and under all release conditions. This impressive change contrasted with the stability in the number of vesicles. Another role for the vesicle was envisaged during intense stimulations when the cytoplasmic ACh and ATP pools become exhausted. The decrease in ATP leads to an increase in calcium and protons in the cytoplasm; this signals the depletion of vesicular ACh and ATP stores in the cytoplasm. Release can go on, while ATP promotes the uptake of calcium by vesicles. At the end of its cycle the vesicle will be full of calcium and will perhaps release it. As far as the mechanism of ACh release is concerned it probably depends on a membrane component (perhaps the large particles) activated by calcium and able to translocate ACh in a quantal or subquantal form. In most recent work we showed that if a lyophilized presynaptic membrane was used to make proteoliposomes filled with ACh, they released ACh upon calcium action.  相似文献   

7.
Dunant Y  Israël M 《Biochimie》2000,82(4):289-302
The classical concept of the vesicular hypothesis for acetylcholine (ACh) release, one quantum resulting from exocytosis of one vesicle, is becoming more complicated than initially thought. 1) synaptic vesicles do contain ACh, but the cytoplasmic pool of ACh is the first to be used and renewed on stimulation. 2) The vesicles store not only ACh, but also ATP and Ca(2+) and they are critically involved in determining the local Ca(2+) microdomains which trigger and control release. 3) The number of exocytosis pits does increase in the membrane upon nerve stimulation, but in most cases exocytosis happens after the precise time of release, while it is a change affecting intramembrane particles which reflects more faithfully the release kinetics. 4) The SNARE proteins, which dock vesicles close to Ca(2+) channels, are essential for the excitation-release coupling, but quantal release persists when the SNAREs are inactivated or absent. 5) The quantum size is identical at the neuromuscular and nerve-electroplaque junctions, but the volume of a synaptic vesicle is eight times larger in electric organ; at this synapse there is enough ACh in a single vesicle to generate 15-25 large quanta, or 150-200 subquanta. These contradictions may be only apparent and can be resolved if one takes into account that an integral plasmalemmal protein can support the formation of ACh quanta. Such a protein has been isolated, characterised and called mediatophore. Mediatophore has been localised at the active zones of presynaptic nerve terminals. It is able to release ACh with the expected Ca(2+)-dependency and quantal character, as demonstrated using mediatophore-transfected cells and other reconstituted systems. Mediatophore is believed to work like a pore protein, the regulation of which is in turn likely to depend on the SNARE-vesicle docking apparatus.  相似文献   

8.
Previous work showed that quantal size can be at least doubled at the frog neuromuscular junction by pretreatment with hormones or hypertonic solutions, primarily by the release of more acetylcholine (ACh) per quantum. Once increased, quantal size slowly declined over hours. Quantal size was measured from miniature end-plate potentials (MEPPs) or currents (MEPCs). In the present experiments, preparations in which quantal size had been increased were exposed to 17-25 mM [K+], quantal size decreased within minutes. Release of comparable numbers of quanta by nerve stimulation did not decrease size. K(+)-solutions did not decrease size if Ca2+ was omitted or replaced with Sr2+. The phosphokinase C (PKC) activators phorbol 12,13-diacetate (PDA) and 1-oleoyl-2-acetyl-rac-glycerol (OAG) also decreased quantal size within minutes when applied in a hypertonic solution that increased the rate of spontaneous release. Phorbol 12,13-dideconate, which does not activate PKC, did not decrease quantal size. The size decrease triggered by K(+)-solutions or PKC activators was blocked by 100 microM 1-(5-isoquinolinyl-sulfonyl)-2-methyl-piperazine (H7), a protein kinase inhibitor. Apparently, increasing [K+] elevated intracellular [Ca2+], which activates PKC, and which leads to the down-regulation of quantal size. During the period in which size is decreasing, there appears to be large and normal subpopulations of MEPP sizes, with normal gradually replacing large. This suggests that large quanta are formed by adding additional ACh to preformed quanta shortly before they are available for release.  相似文献   

9.
The physiological quantal responses at the neuromuscular junction and the bouton-neuron show two classes based on amplitude such that the larger class is about 10 times that of the smaller class; and, the larger class is composed of the smaller class. The ratio of the two classes changes with synaptogenesis, degeneration, nerve stimulation, and is readily altered with various challenges (ionic, tonicity, pharmacological agents). Statistical analyses demonstrate that each bouton or release site at the neruomuscular junction (NMJ) secretes a standard amount of transmitter (one quantum) with each action potential. The amount of transmitter secreted (quantal size) is frequency dependent. The quantal-vesicular-exocytotic (QVE) hypothesis posits that the packet of secreted transmitter is released from one vesicle by exocytosis. The QVE hypothesis neither explains two quantal classes and subunits nor exocytosis of only one vesicle at each site. The latter observation requires a mechanism to select one vesicle from each array. Our porocytosis hypothesis states that the quantal packet is pulsed from an array of secretory pores. A salt shaker delivers a standard pinch of salt with each shake because salt flows through all openings in the cap. The variation in the pinch of salt or transmitter decreases with an increase in array size. The docked vesicles, paravesicular matrix, and porosomes (pores) of a release site form the secretory unit. In analogy with the sacromere as the functional unit of skeletal muscle, we term the array of docked vesicles and paravesicular grid along with the array of postsynaptic receptors a synaptomere. Pulsed secretion from an array explains the substructure of the postsynaptic response (quantum). The array guarantees a constant amount of secretion with each action potential and permits a given synapse to function in different responses because different frequencies would secrete signature amounts of transmitter. Our porocytosis hypothesis readily explains a change in quantal size during learning and memory with an increase in the number of elements (docked vesicles) composing the array.  相似文献   

10.
The physiological quantal responses at the neuromuscular junction and the bouton-neuron show two classes based on amplitude such that the larger class is about 10 times that of the smaller class; and, the larger class is composed of the smaller class. The ratio of the two classes changes with synaptogenesis, degeneration, nerve stimulation, and is readily altered with various challenges (ionic, tonicity, pharmacological agents). Statistical analyses demonstrate that each bouton or release site at the neruomuscular junction (NMJ) secretes a standard amount of transmitter (one quantum) with each action potential. The amount of transmitter secreted (quantal size) is frequency dependent. The quantal-vesicular-exocytotic (QVE) hypothesis posits that the packet of secreted transmitter is released from one vesicle by exocytosis. The QVE hypothesis neither explains two quantal classes and subunits nor exocytosis of only one vesicle at each site. The latter observation requires a mechanism to select one vesicle from each array. Our porocytosis hypothesis states that the quantal packet is pulsed from an array of secretory pores. A salt shaker delivers a standard pinch of salt with each shake because salt flows through all openings in the cap. The variation in the pinch of salt or transmitter decreases with an increase in array size. The docked vesicles, paravesicular matrix, and porosomes (pores) of a release site form the secretory unit. In analogy with the sacromere as the functional unit of skeletal muscle, we term the array of docked vesicles and paravesicular grid along with the array of postsynaptic receptors a synaptomere. Pulsed secretion from an array explains the substructure of the postsynaptic response (quantum). The array guarantees a constant amount of secretion with each action potential and permits a given synapse to function in different responses because different frequencies would secrete signature amounts of transmitter. Our porocytosis hypothesis readily explains a change in quantal size during learning and memory with an increase in the number of elements (docked vesicles) composing the array.  相似文献   

11.
When a quantum of transmitter is released into a synaptic cleft, the magnitude of the subsynaptic response depends upon how much transmitter becomes bound to receptors. Theoretical considerations lead to the conclusion that if receptor density is normally high enough that most of the quantal transmitter is captured, subsynaptic quantal responses may be insensitive to receptor blockade. The effectiveness of receptor blockers in depressing the subsynaptic response should be diminished by interference with processes that normally dispose of transmitter, but increased if receptor density is reduced. In conformity with equations derived from a simple mathematical model, the apparent potency of (+)- tubocurarine (dTC) to depress the peak height of miniature end-plate currents (MEPCs) in mouse diaphragm was substantially reduced by poisoning of acetylcholinesterase (AChE) and increased by partial blockade of receptors by immunoglobulin G from patients with myasthenia gravis or alpha-bungarotoxin. We calculated from the data that normally capture of quantal acetylcholine (ACh) by receptors is approximately 75% of what it would be if there were no loss of ACh by hydrolysis or diffusion of ACh form the synaptic cleft. This fraction is increased to approximately 90% by poisoning of AChE. Conversely, it normally requires blockade of approximately 80% of receptors-and after AChE poisoning, approximately 90% of receptors-to reduce ACh capture (and MEPC height) by 50%. The apparent potency of dTC to alter MEPC time- course (after AChE poisoning) and to depress responses to superperfused carbachol was much greater than its apparent potency to depress MEPC height, but corresponded closely with the potency of dTC to block receptors as calculated from the action of dTC on MEPC height. These results indicate that the amplitude of the response to nerve-applied acetylcholine does not give a direct measure of receptor blockade; it is, in general, to be expected that an alteration of subsynaptic receptor density may not be equally manifest in responses to exogenous and endogenous neurotransmitter.  相似文献   

12.
The amplitude-frequency histogram of spontaneous miniature endplate potentials follows a Gaussian distribution at mature endplates. This distribution gives the mean and variance of the quantum of transmitter. According to the vesicle hypothesis, this quantum is due to exocytosis of the contents of a single synaptic vesicle. Multimodal amplitude-frequency histograms are observed in varying degrees at developing endplates and at peripheral and central synapses, each of which has a specific active zone structure. These multimodal histograms may be due to the near synchronous exocytosis of more than one vesicle. In the present work, a theoretical treatment is given of the rise of intraterminal calcium after the stochastic opening of a calcium channel within a particular active zone geometry. The stochastic interaction of this calcium with the vesicle-associated proteins involved in exocytosis is then used to calculate the probability of quantal secretions from one or several vesicles at each active zone type. It is shown that this procedure can account for multiquantal spontaneous release that may occur at varicosities and boutons, compared with that at the active zones of motor nerve terminals.  相似文献   

13.
The modern condition of knowledge about the molecular mechanisms underlying the quantal transmitter release in the central and the peripheric synapses is analysed. The data about the synaptic vesicles types, their forming, transporting to the sites of release at the nerve endings, exo- and endocytosis processes are presented. Ultrastructural and molecular organization of active zone of nerve ending and transmitter release morphofunctional unit--secretosome, which includes synaptic vesicle, exocytosis protein complex and calcium channels, are described. The basic proteins involved in the exo- and endocytosis and their interactions during transmitter release are examined. The role of the intracellular buffer systems, calcium micro- and macrodomains in the quantal transmitter secretion are considered. The reasons of the active zones functional non-uniformity and plasticity and factors reduced transmitter release in the active zone to the single quantum are analysed.  相似文献   

14.
Changes in parameters of spontaneous acetylcholine (ACh) quantal secretion caused by prolonged high-frequency burst activity of neuromuscular junctions and possible involvement of endogenous calcitonin gene-related peptide (CGRP) and its receptors in these changes were studied. With this purpose, miniature endplate potentials (MEPPs) were recorded using standard microelectrode technique in isolated neuromuscular preparations of m. EDL–n. peroneus after a prolonged high-frequency nerve stimulation (30 Hz for 2 min). An increase in the MEPP amplitudes and time course was observed in the postactivation period that reached maximum 20–30 min after nerve stimulation and progressively faded in the following 30 min of recording. Inhibition of vesicular ACh transporter with vesamicol (1 μM) fully prevented this “wave” of the MEPP enhancement. This indicates the presynaptic origin of the MEPP amplitude increase, possibly mediated via intensification of synaptic vesicle loading with ACh and subsequent increase of the quantal size. Competitive antagonist of the CGRP receptor, truncated peptide isoform CGRP8–37 (1 μM), had no effect on spontaneous secretion parameters by itself but was able to prevent the appearance of enhanced MEPPs in the postactivation period. This suggests the involvement of endogenous CGRP and its receptors in the observed MEPP enhancement after an intensive nerve stimulation. Ryanodine in high concentration (1 μM) that blocks ryanodine receptors and stored calcium release did not influence spontaneous ACh secretion but prevented the increase of the MEPP parameters in the postactivation period. Altogether, the data indicate that an intensive nerve stimulation, which activates neuromuscular junctions and muscle contractions, leads to a release of endogenous CGRP into synaptic cleft and this release strongly depends on the efflux of stored calcium. The released endogenous CGRP is able to exert an acute presynaptic effect on nerve terminals, which involves its specific receptor action and intracellular cascades leading to intensification of ACh loading into synaptic vesicles and an increase in the ACh quantal size.  相似文献   

15.
Abstract— Subcellular fractions were isolated from tissue incubated in [3H]choline with or without the addition of 33 mM-KCl. Radioactive and bioassayable ACh were measured in the synaptosomes, synaptosomal cytoplasm and in the vesicles. After incubation with KCI the vesicles, as isolated, contained ACh of a lower specific activity than the cytoplasmic ACh. Therefore the vesicle fraction as isolated does not represent the source of the high specific activity ACh released upon K+ stimulation. However the vesicle fraction is heterogeneous. Most of the bioassayable ACh but little of the radioactive ACh in the vesicles passed through iso-osmotic Sephadex columns. These results raise the question of the existence of vesicles which contain highly radioactive ACh but which lose it during their isolation by current methods. Different possible forms of heterogeneity are discussed.  相似文献   

16.
We have studied the effects of 25 mM potassium, electrical stimulation of the phrenic nerve, and crude black widow spider venom on the ultrastructure, electrophysiology, and acetylcholine (ACh) contents of mouse diaphragms. About 65% of the ACh in diaphragms is contained in a depletable store in the nerve terminals. The rest of the ACh is contained in a nondepletable store that may correspond to the store that remains in denervated muscles and includes, in addition, ACh in the intramuscular branches of the phrenic nerve. About 4% of the ACh released from the depletable store at rest is secreted as quanta and may come from the vesicles, while 96% is secreted in a nonquantized form and comes from an extravesicular pool. The size of the extravesicular pool is uncertain: it could be less than 10%, or as great as 50%, of the depletable store. K causes a highly (but perhaps not perfectly) selective increase in the rate of quantal secretion so that quanta account for about 50% of the total ACh released from K- treated diaphragms. K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no. 3 (HC-3) is present. However, most of the vesicles are retained under these conditions so that the diaphragms are able to increase slightly their rates of release of ACh when K is added. Venom depletes the terminals of their vesicles and abolishes the release of quanta of ACh. It depletes the vesicular pool of ACh (since it depletes the vesicles), but may only partially deplete the extravesicular pool (since it reduces resting release only 10--40%). The rate of release of ACh from the residual extravesicular pool does not increase when 25 mM K is added. Although we cannot exclude the possibility that stimulation may double the rate of release of ACh from the extravesicular pool, our results are compatible with the idea that the ACh released by stimulation comes mainly from the vesicles and that, when synthesis is inhibited by HC-3, ACh may be exchanged between the extravesicular pool and recycled vesicles.  相似文献   

17.
Although the strength of quantal synaptic transmission is jointly controlled by pre- and post-synaptic mechanisms, the presynaptic mechanisms remain substantially less well characterized. Recent studies reveal that a single package of neurotransmitter is generally insufficient to activate all available postsynaptic receptors, whereas the sum of transmitter from multiple vesicles can result in receptor saturation. Thus, depending upon the number of vesicles released, a given synaptic pathway might be either 'reliable' or 'unreliable'. A lack of receptor saturation in turn makes it possible to modify quantal size by altering the flux of transmitter through the synaptic cleft. Studies are now illuminating several new mechanisms behind the regulation of this transmitter flux--characteristics that control how transmitter is loaded into vesicles, how it is released and the manner by which it interacts with postsynaptic receptors.  相似文献   

18.
The neurotransmitter cycle and quantal size   总被引:4,自引:0,他引:4  
Edwards RH 《Neuron》2007,55(6):835-858
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.  相似文献   

19.
Miniature endplate currents (MEPCs) recorded from mouse diaphragms with a point voltage clamp, without inhibition of acetylcholinesterase (AChE) and in the absence of any drug, showed in their decay phase consistent deviations from an exponential time course, consisting of (a) "curvature," a progressive increase of decay rate during most of the decay phase, followed by (b) "late" tails. Both phenomena persisted when MEPCs (and channel lifetime) were prolonged by ethanol. Curvature was increased by muscle fiber depolarization and decreased by hyperpolarization. Receptor blockade by (+)-tubocurarine, alpha-bungarotoxin, hexamethonium, or myasthenic IgG accelerated the decay of the main part of MEPCs and eliminated curvature; the time constant of MEPCs became close to the channel time constant. We conclude that curvature arises from repeated action of ACh with cooperativity in ACh-receptor interaction; the voltage sensitivity of curvature follows from the voltage sensitivity of channel closing. Ethanol, in addition to its effect to prolong channel lifetime, enhances the tendency of ACh to act more than once to open channels before being lost to the system. Analysis of the rising phase of the MEPC, in terms of driving functions, also indicated that ethanol promotes channel opening by ACh; this action can account for a substantial increase of MEPC height by ethanol when MEPCs are made small by receptor blockade. Driving functions were also voltage sensitive, in a manner indicating acceleration of channel opening, but reduction of channel conductance, with hyperpolarization. Poisoning or inhibition of AChE prolonged MEPCs without altering the duration of ionic channels. Since ethanol caused further prolongation of MEPCs after poisoning of AChE, with little change in MEPC height, we conclude that the extension of mean channel lifetime by ethanol is accompanied by a similar extension of ACh binding to receptors. After poisoning of AChE, MEPCs became very variable in time course and the decay rate (tau-1) was correlated with MEPC height with a slope of log tau vs. log height of 0.77 for MEPCs of greater than 60% mean size. This slope is larger than expected from cooperativity in ACh-receptor interaction. Correlation of tau and height of MEPCs also exists when AChE is intact; the slope of log tau vs. log height was 0.12 with or without prolongation of MEPCs by ethanol.  相似文献   

20.
Fibroblasts in cell culture were loaded with exogenous neurotransmitter acetylcholine (ACh). ACh secretion from loaded cells was detected by whole-cell patch clamp recordings from Xenopus myocytes manipulated into contact with ACh-loaded cells. Two different approaches were used for ACh loading. In the first approach, fibroblasts were incubated in the culture medium containing ACh. Recordings from myocytes revealed fast inward currents that resemble miniature endplate currents found at neuromuscular synapses. The currents observed in recordings from myocytes were due to exocytosis of ACh-containing vesicles. Although exogenous ACh penetrated through the plasma membrane of fibroblasts during incubation and was present in the cytoplasm at detectable levels, cytoplasmic ACh did not contribute to the quantal ACh secretion. In the second approach, exogenous ACh was loaded into the cytoplasm of fibroblasts by microinjection. Under these experimental conditions, fibroblasts also exhibited spontaneous quantal ACh secretion. Analysis of the exocytotic events in fibroblasts following two different protocols of ACh loading revealed that the vesicular compartments responsible for uptake of exogenous ACh are associated with the endocytic recycling pathway. Extrapolation of our results to neuronal cells suggest that in cholinergic neurons, in addition to genuine synaptic vesicles, ACh can be secreted by the vesicles participating in endosomal membrane recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号