首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on recent findings identifying the initial degradative cleavage of CCK-8 at the Met3-Gly4 bond by a metalloendopeptidase, two analogues of CCK-8 with D-Ala and D-Trp substitutions at the Gly4 position were synthesized as stable analogues. Their stability to proteolysis by brain membranes and their binding potency at central CCK receptors were quantified. Both peptides are stable to degradation by peptidases in cortical synaptic membrane preparations. The analogues are nearly equipotent to CCK-8 in their affinities for inhibition of 125I-CCK-33 binding to guinea pig cortical membranes. L-Ala and L-Trp substituted peptides were synthesized for comparison. Both these peptides are degraded by synaptic membranes and the L-Trp substituted peptide possesses a greatly reduced affinity for central CCK receptors. Therefore, the structure of CCK due to the D conformation of Gly is more capable of interacting with brain CCK receptors. Further conformational analysis will establish whether the stabilized structure is a beta-bend or a beta-turn. Since these peptides are highly potent and stable to brain proteolysis they may be useful as stable CCK analogues for in vivo application.  相似文献   

2.
N-Acetylated-alpha-linked acidic dipeptidase (NAALADase) is a Cl- dependent, membrane bound, metallopeptidase that cleaves the endogenous neuropeptide N-acetyl-L-aspartyl-L-glutamate (NAAG) in vitro. To examine the pattern of NAALADase expression in the CNS, subcellular, regional, and developmental studies were conducted. Subcellular fractionation of lysed synaptosomal membranes revealed a substantial enrichment of the peptidase in synaptic plasma membranes as compared to mitochondrial or myelin subfractions. Regional studies reveal an apparent restriction of peptidase activity to kidney and brain. A threefold variation in specific activity was observed among brain regions, with highest specific activity in the cerebellum and lowest in telencephalic structures, a pattern that does not, in general, correlate with NAAG levels. Ontogenetic studies demonstrate a region-dependent, postnatal pattern of expression of NAALADase activity, with adult levels attained earliest in brainstem, as was previously reported for NAAG. Postnatal NAALADase expression would not appear to support a role for the peptidase in constitutive protein processing, but rather suggests that NAALADase may play a role in synaptic peptide degradation. Glutamate (Glu) excised from NAAG by NAALADase could be transported efficiently by uptake processes. Lesion studies, however, do not support a close structural association between NAALADase activity and the corticostriatal sodium-dependent, high-affinity, Glu uptake system. Similar to in vitro data documenting the route of NAAG degradation by NAALADase, after intrastriatal injection, NAAG was rapidly cleaved to two major products, N-acetyl-aspartate and Glu, with a t1/2 of approximately 10 min. Thus, the route of in vivo catabolism of NAAG parallels results from studies on NAALADase activity in vitro. These results are consistent with a role of NAALADase in the synaptic processing of NAAG. However, certain discrepancies in the regional and ontogenetic profiles of NAAG and NAALADase suggest that this relationship is not an exclusive one and may reflect a role for NAALADase on additional N-acetylated acidic peptides in vivo.  相似文献   

3.
The study was undertaken to investigate the oxidation and reduction of cholecystokinin (CCK) both as pure standards and as endogenous porcine peptides. Furthermore an attempt was made to prevent oxidation of the endogenous porcine peptides in the extraction procedure. CCK-8 and CCK-33 standards were always oxidized in weak solutions, CCK-8 varying from 26% to 67% oxidized and CCK-33 from 18% to 70%. Similarly, tissue extracts of porcine brain and duodenum contained oxidized forms of the peptide. CCK standards were readily oxidized in the presence of hydrogen peroxide. Oxidized CCK-8 standard and CCK-8 in porcine brain was 90% reduced and oxidized CCK-33 standard and in duodenal extracts was reduced by 70% by a 40 hour incubation with 0.725 mol/l dithiothreitol at 37 degrees C. Extraction of CCK peptides in the presence of 65 mmol/l dithiothreitol resulted in almost complete prevention of oxidation with over 95% of the peptides being obtained in the reduced state. This additive is therefore recommended for all tissue quantitation studies.  相似文献   

4.
A series of CCK analogues in which positions 28 and 31 have been replaced by N-methylnorleucine residues have been synthesized. It has been found that most of these N-methylnorleucine containing analogues of CCK are highly potent and some are extraordinarily selective for the central vs. peripheral receptor in two animal models (guinea pig and rat). [N-MeNle28,31]CCK26-33 nonsulfated exhibited both high potency (IC50 = 0.13 nM) and selectivity for central vs. peripheral receptors. The pancrease to brain cortex binding affinity ratio for this analogue is 5100 in the rat model. NMR studies reveal that there is cis/trans isomerism about the N-methylnorleucine residue that may be related to high selectivity.  相似文献   

5.
Abstract: The metabolism of Met-enkephalin and cholecystokinin (CCK) 8-(sulfated) by intact microslices was studied in rat brain regions. Incubation of brain slices with Met-enkephalin (400 µ M ) resulted in a linear rate of disappearance of parent peptide and appearance of metabolic fragments whose rate of accumulation was specific to brain region. The degradative rate (pmol/min/mg of protein) of Met-enkephalin was high in caudate-putamen (5,160 ± 120) and lower in nucleus accumbens (3,630 ± 110) and frontal cortex (3,180 ± 120). Inhibition of aminopeptidases decreased Met-enkephalin degradation (50–97% vs. control) in frontal cortex but was less effective in caudate-putamen (20–34%). Tyr-Gly-Gly and Phe-Met were recovered in caudate-putamen and nucleus accumbens, whereas negligible quantities of these fragments were recovered from frontal cortex. Phosphoramidon, an inhibitor of neutral endopeptidase 24.11, decreased Met-enkephalin degradation in caudate-putamen (14%) but had no effect on that in frontal cortex. A cocktail of bestatin or leuhistin (inhibitors of aminopeptidases), phosphoramidon, and captopril (an inhibitor of angiotensin converting enzyme) protected Met-enkephalin from degradation (recovery >95%) in caudate-putamen. CCK 8-(sulfated) degradation on slices from caudate-putamen, nucleus accumbens, and frontal cortex was not altered by inhibitors of neutral endopeptidase 24.11, metalloendopeptidase 24.15, angiotensin converting enzyme, or thiol proteases. Inhibitors of either aminopeptidases or serine proteases produced small reductions (13–30%) in CCK degradation in each region. These data provide evidence for regional and structural specificity in terminating the actions of neuropeptides.  相似文献   

6.
Previous work indicates that both the C-terminal phenylalanine amide and the tryptophan moieties of cholecystokinin (CCK) are critical pharmacophores for interaction with either the A or B receptor subtypes. We have examined a series of analogs of Ac-CCK-7 [Ac-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe33-NH2] (2) in which the phenyl ring of the C-terminal Phe-NH2 has been modified. Compounds were assessed in binding assays using homogenated rat pancreatic membranes and bovine striatum as the source of CCK-A and CCK-B receptors respectively and for anorectic activity after intraperitoneal administration to rats. Substitution of a number of cycloalkyl or bicyclic aryl moieties for the phenyl ring of phenylalanine33 including cyclopentyl (20), cyclohexyl (21), cyclooctyl (23), 2-(5,6,7,8-tetrahydro)naphthyl (26), 2-naphthyl (27), and 1-naphthyl (29) led to analogs with 10-70 times the anorectic potency of 2. The anorectic activity of 21 was blocked by the specific CCK-A receptor antagonist MK-329. Other bulky aliphatic groups in place of the phenylalanine33 aromatic ring such as isopropyl, 2-adamantyl and cyclohexylmethyl gave derivatives similar to 2 in potency. While most of the new compounds were comparable to CCK in binding assays, 23, 26, 27 and 29 were exceptionally potent with IC50s 10(-11)-10(-14) M in the pancreas. Compounds 23 and 29 were further evaluated for their ability to stimulate amylase secretion and found to have potencies similar to that of CCK. The dissociation between potency in the binding and amylase secretion assays suggests that they may interact with a high affinity binding site which is not coupled to amylase secretion. We conclude that CCK receptors possess a generous hydrophobic pocket capable of accommodating large alkyl groups in place of the side chain of phenylalanine33 and that the pharmacological profile of CCK analogs can be tailored by appropriate exploitation of this finding.  相似文献   

7.
Proteolytic degradation of radioligands is an important source of artifact in affinity labeling of receptor proteins. To complement our previous characterization of the pancreatic acinar cell cholecystokinin (CCK) receptor, we synthesized D-Tyr-Gly[(Nle28,31)CCK-26-33]. The amino terminal D-enantiomer of tyrosine provided a site for oxidative iodination, a free amino group for cross-linking, and rendered the peptide resistant to aminopeptidases. The decapeptide was oxidatively iodinated and purified by reverse-phase HPLC to 2,000 Ci/mmol, to yield a probe which was equal in potency and efficacy to CCK-8, and which bound to rat pancreatic membranes in a rapid, reversible, temperature-dependent, specific, saturable and high affinity manner. This probe was resistant to aminopeptidase degradation, and maintained its ability to bind to receptor after incubation with pancreatic membranes or dispersed cells. Affinity labeling of pancreatic membranes with this analogue identified an Mr = 85,000-95,000 molecule. This analogue offers several advantages over existing probes and should be useful for future studies of this and other CCK receptors.  相似文献   

8.
Direct radioreceptor binding experiments and Scatchard analysis reveal CCK receptors on elutriator purified human peripheral blood monocytes, but not on purified human T cells. The monocyte receptors have a single class of high (0.1 nM) affinity binding sites. A structure-function analysis of monocyte binding by different CCK analogs correlates well with previously demonstrated chemotactic responses in monocytes and receptors in brain tissue. Biochemical cross-linking indicates that the monocyte CCK recognition molecule is comparable in molecular size to that in brain membranes. Utilizing a novel fluoresceinated Texas Red-CCK conjugate we have visualized that up to 20% of human peripheral monocytes bear receptors for CCK. A discrete and anatomically significant distribution of CCK receptors in rat spleen is shown by film autoradiography of tissue sections. A more detailed microscopic analysis identifies a dendritic population of monocyte-derived cells within the periarteriolar lymphocyte sheath (PALS) of the white pulp as the CCK receptor-bearing cell in spleen. The anatomical localization of receptor-bearing cells within the PALS region suggests a role for CCK in the antigen processing and sensitization phases of the immune response via regulatory effects of this peptide on a specific, local macrophage-related cell population.  相似文献   

9.
Specific binding sites for cholecystokinin (CCK) have been characterized in a particulate membrane fraction of rat cerebral cortex using a biologically active 125I-labeled derivative of the C-terminal octapeptide of CCK (CCK-8) prepared by reaction with the iodinated form of the imidoester (125IIE), methyl-p-hydroxybenzimidate. The time course of binding to cortical membranes was rapid, temperature dependent, and saturable. Half-maximal binding at 24 degrees C was reached in 30 min and full binding at 120 min. At 37 degrees C there was only a slight increase in 125IIE-CCK-8 bound after 15 min. The addition of a large excess of CCK-8 after 30 min of binding at 24 degrees C caused a prompt and rapid decline in radioligand bound showing that the interaction was reversible. There was a progressive decline in the amount of 125IIE-CCK-8 bound to membranes with increasing concentrations of CCK-8 and other structurally related peptides. CCK-8 displaced 50% of the radioligand at 4 nM, CCK-33 at 10 nM, and gastrin (desulfated CCK-8) at 60 nM. Secretin, a structurally unrelated peptide, was unable to displace the radioligand from cortical membranes at 1.0 microM. Finally, 125IIE-CCK-8 exposed to cortical membranes or to buffers that had previously contained such membranes for 60 min at 24 degrees C bound equally as well to fresh cortical membranes as control radioligand that had not been exposed to the same conditions. Thus the 125I-CCK-8 radioligand used in this study was highly resistant to degradative processes in rat brain tissue.  相似文献   

10.
Both immunoreactive intact cholecystokinin (CCK33) and its COOH-terminal octapeptide (CCK8) are detected in brain and gut extracts of monkey, dog, and pig using an antiserum with equivalent sensitivities for detecting CCK8 in the free form or when incorporated in the intact molecule. The failure to detect intact cholecystokinin in extracts from monkey or dog by using an antiserum developed by immunization with porcine CCK33 is due to marked species differences in the NH2-terminal portion of the molecule. Immunohistochemical staining reveals the presence of CCK peptides in rabbit cerebral cortical tissue neurons. Subcellular fractionation of rat cerebral cortical tissue demonstrates that CCK immunoreactivity is concentrated in the pellet identified by electron microscopy to contain a high proportion of synaptic vesicles. A converting enzyme that differs from trypsin has been partially purified from canine and porcine cerebral cortical extracts. It converts porcine CCK to smaller immunoreactive forms, but fails to convert big gastrin to heptadecapeptide gastrin. This enzyme differs from trypsin not only in substrate specificity but also in several physicochemical properties. Cerebral cortical extracts from hyperphagic ob/ob mice have strikingly lower contents of CCK than those from their lean littermates and other normal mice. These studies taken together are consistent with a role for CCK as a neurotransmitter involved in the overall regulation of appetite.  相似文献   

11.
Prior studies have shown that the cerebral cortex cholecystokinin (CCK) receptor can bind CCK and gastrin analogs with high affinity. In the present work the brain CCK receptor had approximately a three times greater affinity for CCK8 than its C-terminal tetrapeptide (CCK4) while the C-terminal tripeptide (CCK3) was 1000-fold less potent than CCK4. Thus the C-terminal tetrapeptide appears to be the minimal C-terminal CCK sequence required for high affinity binding. Since brain membranes degrade various peptides including CCK, we also evaluated the stability of CCK analogs under the conditions used to measure receptor binding by the following three methods: (1) Studies of degradation-resistant analogs in binding assays; (2) analysis of analog degradation by high performance liquid chromatography (HPLC); and (3) determination of the change in potency of CCK analogs in competitive binding studies subsequent to preincubation with brain membranes. These studies indicated that degradation of analogs by the brain membranes although significant did not account for the differences in potency of analogs in competitive binding studies. Therefore, the observed differences in potencies of the analogs tested are due to the receptor affinity and not sensitivity of the analog to degradation.  相似文献   

12.
Scrapie-associated fibrils (SAF) are unique structures characteristic of the group of unconventional slow infections which includes scrapie and Creutzfeldt-Jakob disease. A major component of hamster fibrils has been described as a protease-resistant glycoprotein with an apparent mol. wt of 27,000-30,000 (PrP27-30). However, we report here that if fibrils are prepared by procedures designed to minimise proteolysis the PrP proteins co-purifying with hamster SAF have mol. wts of 33,000-35,000 (PrP33-35) and 26,000-29,000 (PrP26-29). We find a Lys-Lys-Arg-Pro-Lys sequence at the amino terminus of these SAF proteins, that is absent from PrP27-30, and which has recently been predicted to be the N-terminal sequence of the native PrP protein of uninfected brain. The major SAF protein (PrP33-35) and its normal brain homologue are shown to have the same apparent mol. wt and ionic charge distribution by two-dimensional gel analysis, silver staining and immunoblotting. These results support our view that PrP33-35 and the normal brain PrP protein may have the same covalent structure, and that the PrP protein is recruited into these amyloid-like SAF or into association with a non-protein component of SAF by an irreversible event initiated directly or indirectly by scrapie infection.  相似文献   

13.
Since adrenocorticotropic hormone is found in the brain, and several of its fragments affect adaptive behavior, the formation of fragments of ACTH1-39 by a rat brain synaptic membrane fraction was investigated. Following the incubations at physiological pH conditions, the digests were fractionated by HPLC to quantitate the amounts of ACTH1-39 remaining and products formed. Time- and enzyme-dependent disappearance of ACTH1-39 was accompanied by the accumulation of a major peptide metabolite (product B). Amino acid analysis and NH2-terminal end-group determination revealed that product B was identical to ACTH1-38. These results indicate the predominance of carboxypeptidase activity in the degradation of ACTH1-39 by brain synaptic membranes.  相似文献   

14.
The metabolism of neurotensin in vitro, in various membrane preparations and cell lines of central and peripheral origins was studied. Neurotensin degradation products were separated by HPLC and identified by either amino acid analysis or by their retention times. Peptidases responsible for the cleavages were identified by means of specific fluorigenic substrates or inhibitors. Although the patterns of neurotensin inactivation varied according to the tissue source in all cases, a major primary cleavage occurred at the Pro10-Tyr11 bond, leading to the biologically inactive fragments NT1-10 and NT11-13. A novel neurotensin-degrading metallopeptidase was responsible for this cleavage. Interestingly, it was the only peptidase that was ubiquitously detected. In addition, endopeptidase 24.11 (EC 3.4.24.11) contributed to this cleavage in rat brain synaptic membranes as well as in circular and longitudinal smooth muscle plasma membranes from dog ileum.  相似文献   

15.
The degradation of the enkephalin-containing octapeptide Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu (YGGFMRGL) was systematically investigated by incubating the peptide with synaptic membranes from rat striatum or with purified peptidases. The degradation products were derivatized with 4-dimethylamino-azobenzene-4'-isothiocyanate and then analyzed by high pressure liquid chromatography and by amino-terminal analysis. The incubation of YGGFMRGL with synaptic membranes yielded YGG, YGGF, YGGFM, and MR in a manner that was linear with respect to time. The corresponding carboxyl-terminal fragments FMRGL, MRGL, and RGL could not be detected, which suggests that the degradation of YGGFMRGL by synaptic membranes occurs by carboxypeptidase activity. The incubation of YGGFMRGL with different purified peptidases produced cleavage patterns unique from that seen with synaptic membranes. Enkephalinase recognized only the Gly-Phe bond to produce YGG and FMRGL. Thermolysin recognized the Gly-Phe bond and the Phe-Met bond to yield YGG, YGGF, FMRGL, and MRGL. Angiotensin-converting enzyme (ACE) produced primarily YGGF, MR, and lesser amounts of YGGFMR and YG. The formation of YGG, YGGF, and YGGFM by synaptic membranes could be stimulated 3-fold by the addition of 30 mM NaCl and inhibited by MK-422, an ACE inhibitor, with an IC50 of 3 nM. These data suggest that ACE, a dipeptidyl carboxypeptidase, is the primary enzyme involved in the degradation of YGGFMRGL in brain. ACE apparently works in concert with another carboxypeptidase in brain to yield YGGFM and YGG since the carboxyl-terminal peptides RGL and FMRGL could not be detected.  相似文献   

16.
In the brain synaptic membranes from old rats (24-26 months) in comparison with the mature ones (6-7 months) an increase was shown in disintegration rate with DDS Na, mobility of 5-, 16-doxyl-stearate spin probes and in thermosensitivity of acetylcholinesterase. The total number of SH-groups decreased. While protein composition remained constant lysophosphatidylcholine and saturated fatty acid content in old animals increased. The age-dependent structural rearrangement of synaptic membranes is suggested.  相似文献   

17.
M C Beinfeld 《Peptides》1985,6(5):857-860
Utilizing an antiserum raised against a peptide fragment identical to part of the carboxyl terminal extension of cholecystokinin (CCK) predicted by the sequence of CCK mRNA [7], an antiserum has been generated which does not detect CCK 39, CCK 33, CCK 8, CCK 4 or gastrin 171. This antiserum detects several peptides in rat brain, one similar in size to CCK 33 and another slightly larger than CCK 8. These peptides may represent carboxyl-terminally extended forms of CCK, though their chemical structure has not been determined. These peptides are present in all brain regions where CCK 8 can be detected. The abundance of these peptides, their localization in CCK terminal regions, and their enrichment in synaptosome preparations [1] imply that the tryptic cleavage and amidation reaction occur late in the processing of CCK (as has been observed for other biologically active peptides), and probably occur in the synaptic vesicle.  相似文献   

18.
Brain CCK receptors are structurally distinct from pancreas CCK receptors   总被引:3,自引:0,他引:3  
Brain and pancreas cholecystokinin (CCK) receptors differ markedly in their selectivity for CCK analogs. To determine the size and subunit structure of the brain CCK receptor and compare it to that of the pancreas, 125I-CCK33 was covalently cross-linked with ultraviolet light to its receptor on mouse brain particles and purified pancreatic plasma membranes. When CCK was crosslinked to brain membranes, a single consistent major labeled protein band of Mr = 55,000 was observed in both the presence and the absence of DTT. These data with brain receptors contrast to results with pancreatic receptors where two bands of Mr = 120,000 and 80,000 are labeled in the absence and presence of DTT, respectively. These studies indicate, therefore, that the brain and pancreas CCK receptors are structurally and functionally distinct.  相似文献   

19.
It was shown previously that the tridecapeptide neurotensin is inactivated by rat brain synaptic membranes and that one of the primary inactivating cleavages occurs at the Pro10-Try11 peptide bond, leading to the formation of NT1-10 and NT11-13. The present study was designed to investigate the possibility that this cleavage was catalyzed by proline endopeptidase and/or endopeptidase 24.11 (enkephalinase). Purified rat brain synaptic membranes were found to contain a N-benzyloxycarbonyl-Gly-Pro-4-methyl-coumarinyl-7-amide-hydrolyzin g activity that was markedly inhibited (93%) by the proline endopeptidase inhibitor N-benzyloxycarbonyl-Pro-Prolinal and partially blocked (25%) by an antiproline endopeptidase antiserum. In contrast, the cleavage of neurotensin at the Pro10-Tyr11 bond by synaptic membranes was not affected by N-benzyloxycarbonyl-Pro-Prolinal and the antiserum. When the conversion of NT1-10 to NT1-8 by angiotensin converting enzyme was blocked by captopril and when the processing of NT11-13 by aminopeptidase(s) was inhibited by bestatin, it was found that thiorphan, a potent endopeptidase 24.11 inhibitor, partially decreased the formation of NT1-10 and NT11-13 by synaptic membranes. In conclusion: (1) proline endopeptidase, although it is present in synaptic membranes, is not involved in the cleavage of neurotensin at the Pro10-Tyr11 bond; (2) endopeptidase 24.11 only partially contributes to this cleavage; (3) there exists in rat brain synaptic membranes a peptidase different from proline endopeptidase and endopeptidase 24.11 that is mainly responsible for inactivating neurotensin by cleaving at the Pro10-Tyr11 bond.  相似文献   

20.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号