首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long‐term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle‐only, wildlife‐only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well‐managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.  相似文献   

2.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

3.
This study assessed how the palatability of leaves of different age classes (young, intermediate and older) of Eucalyptus nitens seedlings varied with plant nutrient status, based on captive feeding trials with two mammalian herbivores, red-bellied pademelons (Thylogale billardierii), and common brushtail possums (Trichosurus vulpecula). Seedlings were grown under three nutrient treatments (low, medium and high), and we determined how palatability was related to chemical and physical characteristics of the leaves. Pademelons ate more older leaves than young and intermediate leaves for all treatments. This pattern was best explained by sideroxylonals (formylated phloroglucinol compounds known to deter herbivory by other marsupials), and/or essential oil compounds that were present in lower concentrations in older leaves. In the low-nutrient treatment, possums also ate more of the older leaves. However, in the medium- and high-nutrient treatments, possums ate more intermediate leaves than older leaves and showed a behavioural preference for young leaves (consuming younger leaves first) over intermediate and older leaves, in spite of high levels of sideroxylonals and essential oils. The young leaves did, however, have the highest nitrogen concentration of all the leaf age classes. Thus, either sideroxylonals and essential oils provided little or no deterrent to possums, or the deterrent was outweighed by other factors such as high nitrogen. This study indicates that mammalian herbivores show different levels of relative use and damage to leaf age classes at varying levels of plant nutrient status and, therefore, their impact on plant fitness may vary with environment.  相似文献   

4.
Many mainland populations of kiwi are declining because stoats (Mustela erminea) kill most of their chicks. Stoats are often trapped during conservation programmes, but the long-term effectiveness of trapping has not been measured. During continuous trapping of mammalian predators in the 9800?ha Whangarei Kiwi Sanctuary, the survival of brown kiwi (Apteryx mantelli) chicks declined over time. Following the use of sodium fluoroacetate (1080) to kill rats (Rattus spp.) and possums (Trichosurus vulpecula) and likely secondary poisoning of stoats, chick survival at Riponui increased from 5% to 56%, and the 62% chick survival at Rarewarewa was better than the 20% recorded in a trapped-only area nearby. We suggest that untrappable stoats accumulate in areas subjected to continuous predator trapping. Conservation managers should build into their long-term pest control programmes a periodic pulse of an alternative tool to kill pests that, for whatever reason, actively avoid the primary control tool.  相似文献   

5.
Plant secondary metabolites (PSMs) strongly influence diet selection by mammalian herbivores. Concentrations of PSMs vary within and among plant species, and across landscapes. Therefore, local adaptations may cause different populations of herbivores to differ in their ability to tolerate PSMs. Here, we tested the food intake responses of three populations of a marsupial folivore, the common brushtail possum (Trichosurus vulpecula Kerr), from different latitudes and habitat types, to four types of PSMs. We found clear variation in the responses of northern and southern Australian possums to PSMs. Brushtail possums from southern Australia showed marked decreases in food intake in response to all four PSMs, while the two populations from northern Australia were not as sensitive and their responses did not differ from one another. These results were unexpected, based on our understanding of the experiences of these populations with PSMs in the wild. Our results suggest that geographically separated populations of possums may have evolved differing abilities to cope with PSMs, as a result of local adaptation to their natural environments. Our results provide the basis for future studies to investigate the mechanisms by which populations of mammalian species differ in their ability to tolerate PSMs.  相似文献   

6.
In New Zealand, managing the threat of bovine tuberculosis (TB) to livestock includes population reduction of potentially infectious wildlife, primarily the brushtail possum (Trichosurus vulpecula). Population control is often targeted on forested buffer zones adjacent to farmland, in order to limit movements of possums across the buffer and reduce the risk of disease transmission to livestock. To assess the effectiveness of buffers in protecting livestock we analysed GPS telemetry data from possums located in untreated forest adjacent to buffers, and used these data to characterise patterns of movement that could lead to possums reaching farmland during the season when most dispersal occurs. Analyses of movement data showed that the direction of dispersal by sub-adult and adult possums and the extent of long exploratory movements were not biased toward forest buffers, even though these provided vacant habitat as suitable for possums as untreated forest. Instead, dispersal and exploratory movements were uncommon even for sub-adult possums and such events typically lasted <10 days. Dispersing possums settled predominantly in river valleys. A simulation model was developed for the 3-6-month dispersal season; it demonstrated a probability of <0.001 that an infected possum, originating from a low-density population with low disease prevalence in untreated forest, would move across 3 km of recently controlled forest buffer to reach farmland. Our results indicate short-term reduction in the risk of TB transmission from possums to livestock in New Zealand by the use of depopulated buffer zones, while acknowledging that the threat of disease spread from untreated forest is likely to increase over time as possum population density and, potentially, TB prevalence among those possums, increase in the buffer zone.  相似文献   

7.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

8.
The livestock industry is converting mountain ecosystems in central Argentina into rocky deserts. However, it helps to conserve plant biodiversity, presumably because the ecosystem has evolved under wild herbivores now locally extinct. We hypothesized that low or moderate livestock stocking rates, instead of the high stocking rates currently used for commercial production, might mimic pre-hispanic herbivore pressures. Thus, the mosaic of physiognomies necessary to maintain landscape diversity and soil integrity could be preserved. To test this hypothesis we tracked physiognomic changes in 200 plots (16 m2 each) under different stocking rates, including livestock exclusion, for five years. Contrary to our expectations, we found that both low and moderate stocking rates failed to maintain landscape diversity. As observed for livestock exclusion, low to moderate stocking rates promote retraction and, finally, elimination of short grazing lawns and their replacement by tall tussock grasslands, or possibly by woody vegetation. In turn, heavy grazing pressure maintains the desired short lawn patches in the landscape, but also promotes a concomitant loss and eventual elimination of woodlands, together with an expansion of bare rock as a consequence of soil erosion. These results indicate that the present mosaic of physiognomic types is difficult to maintain and raise questions about the past stability of the ecosystem. We suggest that during the last 400 years of livestock production in the ecosystem, short lawns have been maintained by means of heavy stocking rates and anthropogenic fires ignited to eliminate tussocks. However, this relative stability of lawns has been attained concomitantly with a progressive loss of soils and woodland area. We also discuss some possible explanations for the maintenance of short lawns before the introduction of livestock, based on main climatic and floristic shifts during the late Holocene.  相似文献   

9.
Repellents used to reduce by-kill of birds during pest control must not compromise acceptance by target species. Two repellents combined, anthraquinone (AQ; 0.4 g kg?1) and d-pulegone (DP; 1.0) did not reduce the palatability of blue-coloured carrot baits to laboratory rats (Rattus norvegicus); nor did DP (2.0). Green-coloured carrot baits coated with AQ, DP or AQ + DP were taken from bait stations by wild possums (Trichosurus vulpecula) and rats. Toxic (1080) bait coated with AQ (0.4) and peanut oil (0.1) had reduced palatability but was accepted by laboratory rats. However, laboratory rats did not consume enough baits coated with AQ and bacon, peanut butter, cinnamon or DP to be killed. Anthraquinone (0.4 or 0.8) plus cinnamon and DP (0.5) did not affect palatability or lethality to captive ship rats (R. rattus) or possums. Anthraquinone and DP as surface coatings on baits are therefore acceptable to possums and possibly rats, at concentrations that deter some bird species.  相似文献   

10.
哺乳动物的消化策略(英文)   总被引:13,自引:2,他引:11  
IanD.Hume 《动物学报》2002,48(1):1-19
理解动物的营养生态位是充分理解其整个生态学的基础,对于害兽控制和物种保护也很重要,食肉动物的小肠很发达,这可能与对食物的高消化能力有关;杂食性动物有更复杂的胃肠器官,其后端有可进行发酵的盲肠,消化物的平均滞留时间(mean retention times,MRTs)更长;最长的平均滞留时间见于食草动物,其消化道内高密度的微生物种群对不同滞留区内的消化物进行发酵,但是,并不是所有的食草动物都能够最大程度地消化植物纤维,只有反刍动物、骆驼和个体较大的后肠发酵动物(hindgut fermenter)能够具有这种能力,对比而言,许多其它的食草动物,如前肠发酵的有袋类和小型的后肠发酵动物如兔子、田鼠和负鼠等,它们具备可以使植物纤维消化效率最大的消化系统,可以在食物中的纤维素含量非常高的情况下仍能处理大量的食物。这些不同的消化策略使哺乳动物具有广幅的营养生态位。  相似文献   

11.
Abstract Leaves often decline in nutritional quality as they age, and selective feeding on young leaves may be nutritionally important for herbivores. Preference by mammalian herbivores for young leaves has rarely been measured in the field owing to technical difficulties. We measured preferences with respect to leaf age of an arboreal folivore, the brushtail possum (Trichosurus vulpecula Kerr), feeding on southern rata (Metrosideros umbellata Cav.; Myrtaceae) in a new application of the alkane technique. We characterized the cuticle waxes (n‐alkanes) of rata leaves that were less than 1 year old (‘1‐year’), between 1 and 2 years (‘2‐year’) and greater than 2 years old (‘>2‐year’). Simulations showed that the method accurately discriminated between 1‐year and other age groups but slightly overestimated the importance of rare components of the diet. This bias was larger when discriminating between 2‐year and >2‐year leaves apparently because they had more‐similar alkane profiles. Metrosideros umbellata leaf formed 20.8% of the diet of a population of possums from Rakiura, New Zealand, sampled in autumn 2002 (n = 33). Of the M. umbellata component, alkane analyses showed that 1‐year leaves formed 88.7 ± 3.9% of the diet despite making up only 39.5 ± 2.2% of the leaf biomass on rata trees (n = 14). The foliar concentrations of the macronutrients N, P and K all declined significantly with leaf age (P < 0.0001). Lignin content did not measurably increase with leaf age, suggesting that digestibility per se did not determine the preference of brushtail possums for young rata leaves. This study provides the first quantitative evidence that possums discriminate by leaf age and that the resulting diet is enriched in macronutrients.  相似文献   

12.
Interactions between traditional livestock management practices and wildlife activities are important in the conservation of many mountain ecosystems including the summer rangelands in the Spanish Central Pyrenees, where rooting by wild boar (Sus scrofa) is a large disturbance that can reduce the amount of area available to grazing livestock. This study explored the likely impact of wild boar rooting on Pyrenean grasslands. It quantified the extent of wild boar rooting in livestock grazing areas and determined whether wild boars selected or avoided areas depending on the type of livestock and stocking rates. Wild boar rooting affected 16% of livestock grazing area and occurred in sites that were grazed by cattle, rather than by sheep. In addition, a preference for areas that had intermediate stocking rates was found. The relationship between the increase in the number of wild boars and trends in livestock management suggests that the extent of wild boar rooting will increase especially in cattle grazing areas, and therefore, the area available for cattle grazing in Pyrenean mountain rangelands would decrease significantly.  相似文献   

13.
Abstract. Responses of plant communities to mammalian herbivores vary widely, due to variation in plant species composition, herbivore densities, forage preferences, soils, and climate. In this study, we evaluated vegetation changes on 30 sites within and adjacent to the Sevilleta National Wildlife Refuge (SNWR) in central New Mexico, USA, over a 20‐yr period following removal of the major herbivores (livestock and prairie dogs) in 1972–1975. The study sites were established in 1976, and were resampled in 1986 and 1996 using line transect methods. At the landscape scale, repeated measures ANOVA of percentage cover measurements showed no significant overall net changes in total perennial plant basal cover, either with or without herbivores present; however, there was an overall increase in annual forbs and plant litter from 1976 to 1996. At the site scale, significant changes in species composition and dominance were observed both through time and across the SNWR boundary. Site histories varied widely, with sites dominated by Bouteloua eriopoda being the most dynamic and sites dominated by Scleropogon brevifolius being the most persistent. Species‐specific changes also were observed across multiple sites: B. eriopoda cover increased while Gutierrezia sarothrae greatly decreased. The non‐uniform, multi‐directional changes of the sites' vegetation acted to prevent detection of overall changes in perennial vegetation at the landscape level. Some sites displayed significant changes after removal of herbivores, while others appeared to respond primarily to climate dynamics. Certain species that were not preferred by livestock or prairie dogs, showed overall declines during drought periods, while other preferred species exhibited widespread increases during wetter periods regardless of herbivore presence. Therefore, the vegetation dynamics cannot be attributed solely to removal of herbivores, and in some cases can be explained by short‐ and long‐term fluctuations in climate. These results emphasize the variety of responses of sites with differences in vegetation to mammalian herbivores under otherwise similar climatic conditions, and illustrate the value of site‐ and landscape‐scale approaches to understanding the impacts of plant‐herbivore interactions.  相似文献   

14.
Studies on dietary functional responses in large herbivores are traditionally conducted by following individual animals. The method is very time-consuming, and hence, typically provides only a narrow array of forage species compositions. Here we use a range level approach to look at moose (Alces alces) selectivity for and utilization of forage species in relation to availability in both summer and winter. We compare 12 Norwegian ranges representing a large scale gradient in plant communities. The most important forage species in the diet were birches (Betula spp., comprising 43% of all trees browsed in summer and 27% in winter), rowan (Sorbus aucuparia, 25% of trees browsed in summer, 37% in winter), and bilberry (Vaccinum myrtillus, 42% of herbaceous epidermal fragments in summer feces). Selectivity for birches was positively related to its availability and negatively related to availability of rowan, Salix spp., and aspen (Populus tremula) together (all more selected for than birches). Multiple regression models including availability of several forage species were thus superior to single-species models in explaining the diet content of main forage plants. Selectivity for birches was also stronger in summer than in winter, while the opposite pattern was found for rowan. The finding is relevant for our evaluation of the quality of summer and winter ranges, and hence, their relative influence on population productivity. Our study underlines the need to incorporate species composition of available forage when quantifying dietary functional responses in selective herbivores such as moose. Furthermore, care should be taken when extrapolating data on moose diet across ranges or seasons.  相似文献   

15.
To minimize the impacts of introduced pests and to justify and prioritize pest control, managers need to know the relationship between pest density and damage. This relationship can be difficult to quantify because pest impacts can be highly variable. In New Zealand, introduced brushtail possums (Trichosurus vulpecula) browse a wide range of native forest species. However, possum browse is extremely patchy making it difficult to quantify the relationship between density and damage, meaning the benefits of reducing possum densities are poorly understood. We quantified patterns of possum browse on kamahi (Weinmannia racemosa), a common canopy tree species, at 21 forest sites that were repeat‐measured over an 8‐year period in the North Island, New Zealand, during which time possum densities fluctuated widely. We fitted a multilevel statistical model in order to quantify the relationship between possum density and browse damage while simultaneously quantifying how browse varied among trees, sites and years. Higher possum densities were associated with greater browse damage, but browse was also patchily distributed among trees at the same site, and among sites and years for a given possum density. This heterogeneity meant there was no simple density damage relationship, with the relationship differing from tree to tree and among sites and years. Our results show that at most sites reductions in possum density would have little benefit in reducing the probability of heavy browse on kamahi trees, but at a few sites there would be substantial benefits. This approach provides insights into the pattern and potential causes of variability in possum impacts, and a quantitative basis for prioritizing sites for possum control.  相似文献   

16.
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.  相似文献   

17.
Semi-natural grasslands are an important habitat for endangered plant and animal species. In grasslands, low-intensity livestock grazing is frequently applied as a tool for nature conservation. We aim to investigate how different livestock species in various densities influence the state and flower production of a single plant species by selective defoliation and/or trampling. We hypothesized that (1) moderate stocking densities would cause more damage than low, and that (2) horses would cause more damage than cattle due to their higher activity. The experiment took place in a salt marsh in the Netherlands where grazing treatments with horses and cattle in two stocking densities were installed. Damage to individual Aster tripolium plants and number of flower heads were recorded at the end of the grazing season in late September. We found (1) more damage and fewer flower heads in moderate stocking densities compared to low densities. However, a reduction of flower heads by higher stocking densities was less clear with cattle. No clear difference (2) between livestock species was found, due to opposite trends in moderate and low densities. At low stocking densities, cattle caused more damage by selective defoliation. At moderate densities, horses caused more damage, because of their higher mobility, which led to damage by trampling. We conclude that the response of Aster to grazing is strongly affected by behavioral differences between livestock species. Grazing experiments and management schemes for semi-natural grasslands should therefore not only consider stocking densities, but also livestock species to reach desired conservation goals.  相似文献   

18.
In some developing countries, human activities in protected areas threaten wildlife populations and their habitats. This study was conducted to understand the influences of free-range livestock on the wild mammalian population in Baluran National Park, Indonesia. There were 3852 and 1156 cows and goats, respectively, and livestock occupied an area of approximately 55.96 km2. The species richness and probability of occupancy in areas with and without livestock were assessed, and the spatial co-occurrence and overlap of daily activity patterns among mammalian species and livestock were measured. A total of 39 camera traps were installed from August 2015 to January 2016, collecting 23,021 independent photographs. In areas with livestock, the number of mammal species (eight) was lower than in areas without livestock (11 species). The most affected species were the large herbivores Bubalus bubalis and Bos javanicus, and a large carnivore Panthera pardus, all of which were absent in areas with livestock. Regardless of the feeding guild, the probability of occupancy of almost all species declined in areas with livestock, except the medium herbivores Paradoxurus hermaphroditus and Hystrix javanica that showed a higher probability of occupancy. The species whose probability of occupancy declined were the carnivores Cuon alpinus and Prionailurus bengalensis; the herbivores Rusa timorensis, Tracypithecus auratus and Muntiacus muntjak; and the omnivore Sus scrofa. In the presence of livestock, R. timorensis and S. scrofa changed their activities from diurnal to nocturnal. Livestock affected most wild mammals in several ways, including by reducing the species richness, lessening the probability of occupancy and changing the daily activity patterns of many animals. This research recommends a significant reduction in the size of the range area for domestic livestock.  相似文献   

19.
Livestock production is the primary source of livelihood and income in most of the high steppe and alpine regions of the Indian Trans-Himalaya. In some areas, especially those established or proposed for biodiversity conservation, recent increases in populations of domestic livestock, primarily sheep and goats, have raised concern about domestic animals competitively excluding wild herbivores from the rangelands. We evaluated the influence of domestic sheep and goat grazing on the habitat use and time budget of the endangered Tibetan argali Ovis ammon hodgsoni in the proposed Gya-Miru Wildlife Sanctuary, Ladakh, India. We asked if the domestic sheep and goat grazing and collateral human activities relegate the argali to sub-optimal habitats, and alter their foraging time budgets. Data were collected on habitat use and time budget of a population of c. 50 argalis before and after c. 2,000 sheep and goats moved onto their winter pasture in the Tsabra catchment of the aforementioned reserve. Following the introduction of domestic sheep and goats, argalis continued to use the same catchment but shifted to steeper habitats, closer to cliffs, with lower vegetation cover, thus abandoning previously used plant communities with denser cover. Argalis’ active time spent foraging also decreased by 10% in response to the presence of livestock. These results suggest a clear disturbance effect of livestock on argalis, and indicate a potential for competition, conceivably a significant disadvantage for argalis in winter when forage availability is minimal.  相似文献   

20.
Abstract: Fertility control is currently under development for the control of brushtail possums (Trichosurus vulpecula), one of New Zealand's most serious vertebrate pests. Despite intensive research into various methods for achieving infertility, including immunocon-traception and disrupting endocrine control of reproduction, researchers know little about the potential effects of these methods on the behavior of wild possums. We assessed the effects of surgically imposed sterility, either to block fertilization (tubal ligation) or to disrupt endocrine control of fertility (gonadectomy), by using radiotelemetry on the movement patterns and site fidelity of wild brushtail possums. In addition, we assessed the effect of gonadectomy on the transmission rate of a commonly occurring, directly transmitted pathogen in possums, Leptospira interrogans serovar balcanica (hereafter L. balcanica), to determine the effect of any behavioral changes on possum contact rates. Both tubal ligation and gonadectomy of females did not appear to have any appreciable effect on behavior, with sterilized females having space-use patterns and fidelity to seasonal breeding ranges similar to those of fertile females. However, gonadectomy of male possums resulted in a significant reduction of 42% and 47% in the 95% and 70% isopleth seasonal breeding ranges, respectively. Furthermore, the transmission rate of L. balcanica in gonadectomized male and female possums was reduced by 88% and 63%, respectively, compared with that in fertile male and female possums. Overall, these results suggest that fertility control, either by blocking fertilization (e.g., immunocontraception) or by disrupting endocrine control of reproduction (e.g., gonadotropin-releasing hormone vaccines), is unlikely to have an impact on social organization and behavior of brushtail possums in ways that may compromise the efficacy of fertility control for reducing population density. However, the reduction in the transmission rate of L. balcanica indicates that fertility control that interferes with endocrine control of reproduction is likely to reduce the contact rate between possums. This could have implications for the control of other wildlife diseases requiring direct contact for transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号