首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.  相似文献   

2.
The cardiovasculature is one of the major body systems and probably the one most exposed to stress. There is clear evidence that increasing levels of cell stress proteins within the heart is cardioprotective. In addition, there is rapidly emerging evidence that secreted cell stress proteins play a role in the function of the cardiovascular tissues. Those secreted proteins have three potential functions: (1) as normal homeostatic cardiovascular signals (e.g. protein disulphide isomerase); (2) as anti-inflammatory molecules, which are able to inhibit cardiovascular pathology (e.g. Hsp27); and (iii) as pro-inflammatory signals that can induce and promote cardiovascular pathology (e.g. Hsp60). As all of these various proteins may be released—at different rates—and in different cardiovascular diseases—we need to consider the cohort of potential secreted cell stress proteins as a dynamic system (network) that can aid and/or damage the equally dynamic cardiovascular system.  相似文献   

3.
4.
Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95–104, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
Cell growth and survival are potential therapeutic targets for the control of complications associated with hypertension. In most cardiovascular disorders, cardiac fibroblasts and large-vessel smooth muscle cells can replicate and thus contribute to the disease. We propose that cardiovascular hyperplasia may be reversed via therapeutic apoptosis induction with drugs that are safe and already used in the clinic. We first reported that, irrespective of the drug class, those drugs that are able to induce regression of cardiovascular hypertrophy are also able to reverse cardiovascular hyperplasia via apoptosis. Drugs active in this regard include inhibitors of the renin-angiotensin system, calcium channel blockers, and beta-blockers. Moreover, the effects of these drugs on cell survival is not merely secondary to blood pressure reduction. Therapeutic apoptosis in the cardiovascular system of the spontaneously hypertensive rat is characterized by a rapid and transient onset following initiation of antihypertensive treatment. Herein, the induction and termination of therapeutic apoptosis during drug treatment of hypertension will be briefly reviewed and supported by novel data suggesting that reversal of cardiovascular hyperplasia is associated with reduced cell growth and a resistance to further induction of therapeutic apoptosis, as shown in spontaneously hypertensive rats receiving an intermittent regime of nifedipine therapy. We propose that the presence of a cell subpopulation with defective cell cycle regulation may determine organ susceptibility to undergo therapeutic apoptosis.  相似文献   

6.
7.
心血管疾病是威胁人类健康的重大疾病,而心肌细胞数量逐渐减少,甚至衰竭是其核心病变。心肌细胞补偿性替代治疗是未来用于治疗这类疾病的重要手段,因此,心肌细胞的来源和有效治疗将成为关键。目前,心肌细胞构建的主要方法有多能干细胞诱导分化成心肌祖细胞或心肌细胞、心源性心肌祖细胞,以及体细胞重编程等。其中,多能干细胞向心肌细胞分化是最常用的方法;而体细胞转分化技术相较于传统的诱导多潜能干细胞衍生心肌细胞缩短了时间窗,为潜在的心血管疾病治疗提供了另一种思路。随着获取心肌细胞效率及其质量的提升,未来心血管疾病的治疗将有望获得重大突破。  相似文献   

8.
Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.  相似文献   

9.
This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.  相似文献   

10.
心血管疾病发病率和病死率居高不下,寻求敏感性高的生物学指标帮助早期诊断和改善预后意义重大.血浆游离DNA(cell-free DNA,cfDNA)是一类存在于血浆、尿液及其他体液中游离于细胞之外的双链DNA片段.血浆cfDNA水平在心血管疾病的早期明显升高,提示其可能是心血管疾病的潜在生物标志物.为了更深入理解cfDN...  相似文献   

11.
Whereas the pathogenesis of atherosclerosis has been intensively studied and described, the underlying events that initiate cardiovascular disease are not yet fully understood. A substantial number of studies suggest that altered levels of oxidative and nitrosoxidative stress within the cardiovascular environment are essential in the development of cardiovascular disease; however, the impact of such changes on the subcellular or organellar components and their functions that are relevant to cardiovascular disease inception are less understood. In this regard, studies are beginning to show that mitochondria not only appear susceptible to damage mediated by increased oxidative and nitrosoxidative stress, but also play significant roles in the regulation of cardiovascular cell function. In addition, accumulating evidence suggests that a common theme among cardiovascular disease development and cardiovascular disease risk factors is increased mitochondrial damage and dysfunction. This review discusses aspects relating mitochondrial damage and function to cardiovascular disease risk factors and disease development.  相似文献   

12.
在心脏发育中,心血管的发育至关重要,其中细胞增殖参与调控心脏的正常发育.细胞增殖是通过细胞周期而实现的.在细胞周期中,细胞周期调控分子(包括细胞周期蛋白,依赖于细胞周期蛋白的蛋白激酶及其抑制因子)和信号通道(包括丝裂激活蛋白、内皮素-1等)的调控表达的改变导致整个心血管系统的重塑,并常伴随着心血管系统的紊乱,引起如心肌梗塞、心肌炎、及充血性心力衰竭等相关疾病.  相似文献   

13.
The review discusses structural features of T-cadherin (T-cad) that allow it to perform functions other than cell–cell adhesion. T-cad is a receptor of the significant metabolic components, low-density lipoproteins and high-molecular-weight adiponectin. Association of cardiovascular and metabolic diseases with the T-cad gene polymorphism, as well as predominant T-cad expression in the cardiovascular system, cardioprotection and ischemic limb revascularization, depending on T-cad interaction with adiponectin, suggest a major role of this receptor in vascular and cardiac cell functioning. Possible mechanisms of T-cad-mediated regulation of metabolic processes are discussed.  相似文献   

14.
15.
The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and heart. During amphioxus development a laminin-containing extracellular matrix (ECM) was found to fill the space between the basal cell surfaces of endoderm and mesoderm along their anterior-posterior (A-P) axes. Blood cells appear in this ECM-filled tubular space, coincident with the development of a vascular lumen. To get insight into the underlying cellular mechanism, we induced vessels in vitro with a cell polarity similar to the vessels of amphioxus. We show that basal cell surfaces can form a vascular lumen filled with ECM, and that phagocytotic blood cells can clear this luminal ECM to generate a patent vascular lumen. Therefore, our experiments suggest a mechanism of blood vessel formation via basal cell surfaces in amphioxus and possibly in other invertebrates that do not have any endothelial cells. In addition, a comparison between amphioxus and mouse shows that endothelial cells physically separate the basement membranes from the vascular lumen, suggesting that endothelial cells create cardiovascular tubes with a cell polarity of epithelial tubes in vertebrates and mammals.  相似文献   

16.
Evidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area.  相似文献   

17.
Once degenerative aortic valve disease becomes symptomatic, valve replacement is necessary for prognostic and symptomatic reasons. In elderly patients, symptoms of degenerative aortic valve can often be doubtful. Therefore, it is difficult but important to distinguish patients who need surgery from those who do not. Estimation of the rate of the progression of this disease can be helpful herein because one needs to bear in mind that aortic valve degeneration is an active process, which can influence the rate of progression. Recently, autophagy was discovered as a mechanism of cell death in different cardiovascular diseases such as atherosclerosis, aortic valve degeneration, heart failure and at regions around heart infarctions. Thus understanding autophagy in all its details can be helpful to contribute insights into the cell death machinery of cardiovascular diseases. This could open ways for inhibition of cell death in cardiovascular disease and possibly define targets for future drug design.  相似文献   

18.
Designing gene delivery vectors for cardiovascular gene therapy   总被引:3,自引:0,他引:3  
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.  相似文献   

19.
Cardiovascular diseases are the leading cause of death in the industrialized countries. The cardiovascular system includes the systemic blood circulation, the heart and the pulmonary circulation providing sufficient blood flow and oxygen to peripheral tissues and organs according to their metabolic demand. This review focuses on three major cell types of the cardiovascular system: myocytes of the heart as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. Ion channels initiate and regulate contraction in all three cell types, and the identification of their genes has significantly improved our knowledge of signal transduction pathways in these cells. Among the ion channels expressed in smooth muscle cells, cation channels of the TRPC family allow for the entry of Na(+) and Ca(2+). Physiological functions of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. Possible functional roles and physiological regulation of TRPCs as homomeric or heteromeric channels in these cell types are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes of the cardiovascular system like hypertension as well as cardiac hypertrophy and increased endothelial permeability.  相似文献   

20.
Emerging evidence indicates that Wnt signaling regulates crucial aspects of cardiovascular biology (including cardiac morphogenesis, and the self-renewal and differentiation of cardiac progenitor cells). The ability of Wnt signaling to regulate such diverse aspects of cardiovascular development rests on the multifarious downstream and tangential targets affected by this pathway. Here, we discuss the roles for Wnt signaling in cardiac and vascular development, and focus on the emerging role of Wnt signaling in cardiovascular morphogenesis and progenitor cell self-renewal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号