首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

2.
The tumor promoter phorbol-12-myristate-13-acetate (PMA) increases the poly ADP-ribosylation of acid extractable (0.2N H2SO4) nuclear proteins in mouse embryo fibroblasts C3H10T1/2. Catalase suppresses the reaction by approximately 50%. Polyacrylamide gel electrophoresis reveals that the core histones H2B, A24 and H3d serve as major poly ADP-ribose acceptors. Smaller amounts of poly ADP-ribose are associated with histones H2A/H3 and H1. Poly ADP-ribosylation of histones may change the nucleosomal structure and function and play a role in PMA induced modulation of gene expression in promotion.  相似文献   

3.
PHA-stimulated human lymphocytes contain the protein (SBP) which has selectivity in binding of 1.8 kb fragment of human satellite DNA III (HS3) as compared to other DNA sequences. It is shown that the binding site is localized within 1kb Sau3A-EcoR I fragment of HS3. SBP-binding activity is increased after treatment of cells with tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). The essential increase in a number of metaphases with chromosome endoreduplications in TPA-treated lymphocytes indicates that SBP may be involved in initiation of chromosome replication or in alteration of the mitotic spindle function.  相似文献   

4.
5.
Collagen synthesis was inhibited in JB-6 mouse epidermal cells after exposure to 12-O-tetradecanoylphorbol-13-acetate under conditions leading to irreversible neoplastic transformation. In vitro translation and hybridization studies demonstrated a dramatic decrease in collagen mRNA in 12-O-tetradecanoylphorbol-13-acetate-treated cells, suggesting that the inhibition of collagen synthesis in response to 12-O-tetradecanoylphorbol-13-acetate is due to regulation at a pretranslational level.  相似文献   

6.
Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts   总被引:5,自引:0,他引:5  
Exposure of human fibroblasts to 5 J/m2 of UV light resulted in a rapid increase of up to 1500% in the intracellular content of poly(ADP-ribose) and a rapid depletion of its metabolic precursor, NAD. When added just prior to UV treatment, the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, totally blocked both the increase of poly(ADP-ribose) and decrease in NAD for up to 2.5 h. Addition of 3-aminobenzamide at the time of maximal accumulation of poly(ADP-ribose) resulted in a decrease to basal levels with a half-life of approximately 6 min. The rates of accumulation of poly(ADP-ribose) and depletion of NAD were increased in the presence of either 1-beta-arabinofuranosylcytosine or hydroxyurea. Since these agents are known to cause an additional accumulation of DNA strand breaks following UV irradiation, these data provide evidence for a mechanism in which the rate of poly(ADP-ribose) synthesis following DNA damage is regulated in intact cells by the number of DNA strand breaks. Under conditions in which the synthesis of poly(ADP-ribose) was blocked, DNA repair replication induced by UV light was neither stimulated nor inhibited.  相似文献   

7.
In rabbit aortic smooth muscle cells (SMC), protein kinase C-activating 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited the whole blood serum (WBS)-induced DNA synthesis. The inhibitory action of TPA was mimicked by another protein kinase C-activating phorbol ester, phorbol-12,13-dibutyrate (PDBu), but not by 4 alpha-phorbol-12,13- didecanoate known to be inactive for this enzyme. Prolonged treatment of the cells with PDBu caused the down-regulation of protein kinase C. In these cells, WBS still induced DNA synthesis but the inhibitory action of TPA was abolished. DNA synthesis started at 18 h and reached a maximal level 24 h after the addition of WBS. TPA inhibited the WBS-induced DNA synthesis even when added 12 h after the addition of WBS. These results suggest that protein kinase C has an antiproliferative action in rabbit aortic SMC and that this action is attributed to the inhibition of the progression from the late G1 into S phase of the cell cycle. TPA also inhibited the phospholipase C-mediated hydrolysis of phosphoinositides which was induced by WBS within several minutes, but the relevance of this effect on the antiproliferative action of TPA is uncertain.  相似文献   

8.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

9.
ADP-ribose polymers are rapidly synthesized in cell nuclei by the poly(ADP-ribose) polymerases PARP-1 and PARP-2 in response to DNA strand interruptions, using NAD(+) as precursor. The level of induced poly(ADP-ribose) formation is proportional to the level of DNA damage and can be decreased by NAD(+) or PARP deficiency, followed by poor DNA repair and genomic instability. Here we studied the correlation between poly(ADP-ribose) level and DNA strand break repair in lymphoblastoid Raji cells. Poly(ADP-ribose) synthesis was induced by 100 microM H(2)O(2) and intensified by the 1,4-dihydropyridine derivative AV-153. The level of poly(ADP-ribose) in individual cells was analyzed by quantitative in situ immunofluorescence and confirmed in whole-cell extracts by Western blotting, and DNA damage was assessed by alkaline comet assays. Cells showed a approximately 100-fold increase in poly(ADP-ribose) formation during the first 5 min of recovery from H(2)O(2) treatment, followed by a gradual decrease up to 15 min. This synthesis was completely inhibited by the PARP inhibitor NU1025 (100 microM) while the cells treated with AV-153, at non-genotoxic concentrations of 1 nM-10 microM, showed a concentration-dependent increase of poly(ADP-ribose) level up to 130% after the first minute of recovery. The transient increase in poly(ADP-ribose) level was strongly correlated with the speed and efficiency of DNA strand break rejoining (correlation coefficient r > or = 0.92, p<0.05). These results are consistent with the idea that poly(ADP-ribose) formation immediately after genome damage reflects rapid assembly and efficient functioning of repair machinery.  相似文献   

10.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

11.
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.  相似文献   

12.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

13.
The effect of nicotinamide on unscheduled DNA synthesis was studied in resting human lymphocytes. In cells treated with UV irradiation or with MNNG, nicotinamide caused a two-fold stimulation of unscheduled DNA synthesis and retarded the rate of NAD+ lowering caused by these treatments. Nicotinamide also reduced the burst of poly(ADP-ribose) synthesis caused by MNNG treat-ment. Thus under conditions that it enhances unscheduled DNA synthesis, nicotinamide causes marked effects on the metabolism of NAD+ and poly(ADP-ribose). The effect of nicotinamide on unscheduled DNA synthesis was shown to be independent of protein or polyamine synthesis.  相似文献   

14.
A possible role of poly(ADP-ribose) synthesis in modulating the response of V79 cells to DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) was investigated. Inhibition of [3H]thymidine (dThd) incorporation into DNA and lowering of NAD+ levels in intact cells were employed as parameters of DNA-synthesis inhibition and poly(ADP-ribose) synthesis, respectively. Dose responses of these parameters were studied in cells 2 and 24 h after treatment with the methylating agents in medium with or without dThd. The initial inhibition of DNA synthesis was uniformly associated with stimulation of poly(ADP-ribose) synthesis whether the cells were treated with MNNG or MMS, incubated with or without 20 microM dThd which did not inhibit poly(ADP-ribose) synthesis, or incubated with 3 mM dThd which did inhibit the latter synthesis. By contrast, the DNA-synthesis inhibition detected 24 h after treatment with MNNG was not associated with poly(ADP-ribose) synthesis. These data suggest that (i) the mechanism of this later inhibition of DNA synthesis is different from that of the initial inhibition, (ii) DNA-synthesis inhibition does not stimulate poly(ADP-ribose) synthesis, and (iii) single-strand breaks, resulting from N-methylation of the DNA, stimulate poly(ADP-ribose) synthesis, which may produce the initial inhibition of DNA synthesis. The initial inhibition of DNA synthesis was not uniformly associated with mutagenesis and dThd facilitation of MNNG-induced cytotoxicity and mutagenesis. This indicates that O-methylation of DNA does not stimulate poly(ADP-ribose) synthesis. Our data suggest that, in V79 cells treated with methylating agents, poly(ADP-ribose) synthesis is stimulated by single-strand breaks, inhibits DNA synthesis, and thereby serves to allow time for repair of the DNA prior to replication.  相似文献   

15.
A single wave of mitotic activity was observed in a monolayer culture of rat keratinocytes immediately after exposure to 12-O-tetradecanoylphorbol-13-acetate. A peak for cells in prophase, observed at 10 min after the exposure, was followed by a peak for metaphase at 20 min, for anaphase at 25 min and telophase at 30 min after the exposure. Thereafter, the mitotic activity began to subside. This transient stimulation of mitotic activity resulted in an increase of population density in the monolayer culture. There was neither a stimulation of DNA synthesis during this period nor a change of the DNA content after the mitotic activity was completed. This single burst of synchronous mitotic activity which did not require a substantial stimulation of DNA synthesis suggests that the effect was on the initiation process of mitosis among a subpopulation of cells, presumably cells delayed in the G2 phase of the cell cycle.  相似文献   

16.
3-Aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) synthesis, does not affect the dose response for ionizing radiation-induced inhibition of DNA synthesis in human fibroblasts. If the radioresistant DNA synthesis observed in fibroblasts from patients with ataxia-telangiectasia (A-T) were due to reduced poly(ADP-ribose) synthesis after irradiation, as has been proposed, the response in normal cells incubated with 3AB would have been similar to that observed in A-T cells. Therefore, altered poly(ADP-ribose) synthesis in A-T cells is not solely responsible for their radioresistant DNA synthesis.  相似文献   

17.
DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by reactive oxygen species and during DNA metabolism, but the analysis of cellular responses to SSB remains difficult due to the lack of an experimental method to produce SSB alone in cells. By using human cells expressing a foreign UV damage endonuclease (UVDE) and irradiating the cells with UV through tiny pores in membrane filters, we created SSB in restricted areas in the nucleus by the immediate action of UVDE on UV-induced DNA lesions. Cellular responses to the SSB were characterized by using antibodies and fluorescence microscopy. Upon UV irradiation, poly(ADP-ribose) synthesis occurred immediately in the irradiated area. Simultaneously, but dependent on poly(ADP-ribosyl)ation, XRCC1 was translocated from throughout the nucleus, including nucleoli, to the SSB. The BRCT1 domain of XRCC1 protein was indispensable for its poly(ADP-ribose)-dependent recruitment to the SSB. Proliferating cell nuclear antigen and the p150 subunit of chromatin assembly factor 1 also accumulated at the SSB in a detergent-resistant form, which was significantly reduced by inhibition of poly(ADP-ribose) synthesis. Our results show the importance of poly(ADP-ribosyl)ation in sequential cellular responses to SSB.  相似文献   

18.
We have measured gamma-ray-induced neoplastic transformation in C3H10T1/2 mouse embryo cells irradiated at an average 10 cGy/day throughout the useful life span of these cells for transformation studies. At cumulative total doses of 50, 150, 300, and 450 cGy, samples of cells were assayed for cell survival and neoplastic transformation with or without the administration of 0.1 micrograms/ml of 12-O-tetradecanoylphorbol-13-acetate (TPA) starting 24 h after the irradiation. The results indicate that, at a dose rate of 10 cGy/day, the rate of induction of neoplastic transformation is reduced by a factor of thirteen compared to that at 100 cGy/min. Still, frequencies above the background level are observed. These results are consistent with previous data which, at 144 cGy/day (0.1 cGy/min), showed that radiation-induced initiation events could be repaired during exposure, thus reducing the frequency of transformation from that observed at 100 cGy/min [A. Han et al., Cancer Res. 40, 3328-3332 (1980)]. Although the addition of TPA after the delivery of a particular dose at 10 cGy/day produced a significant increase in the frequency of neoplastic transformation, the degree of enhancement was less than after higher-dose-rate exposures [C.K. Hill et al., Radiat. Res. 109, 347-351 (1987)]. These results indicate that during 7 weeks of exposure, the repair of radiation-induced initiation was extensive but not complete, and suggest that a significant part of the damage persists which can be promoted by TPA. These observations support the inference that initiation and promotion are not tightly coupled and are probably independent processes.  相似文献   

19.
The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1–/– MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号