首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

2.
We studied the pressure-flow relationships of various endotracheal tubes (ETT) at frequencies (f) and tidal volumes (VT) in the range used for high-frequency ventilation (HFV) (f: 2-32 Hz, VT: 15-100 ml). Sinusoidal flows were applied to ETT inserted into a rigid bottle or into the tracheae of three anesthetized paralyzed dogs, while pressure fluctuations were measured both proximal and distal to the ETT. The pressure drops in the ETT were nonlinearly related to the peak flow rate and were VT dependent, suggesting that turbulent frictional head loss and convective acceleration were important. The pressure drops measured in vitro were found to be in good agreement with the predictions of a nonlinear oscillatory pressure-flow equation (derived herein), which incorporate the effects of turbulent frictional losses, convective acceleration, inertance, and compliance. The pressure drops measured in situ were 30-50% higher than with the corresponding f-VT combinations in vitro. Possible explanations of these differences are junctional losses at the tip of the ETT or the nonrigid character of the trachea.  相似文献   

3.
We studied four supine dogs that were anesthetized with pentobarbital, intubated, and ventilated with a piston pump. The dimensional response of central (CAW) (greater than 2 mm diam) and peripheral airways (PAW) (smaller than 2 mm diam) to changes in transpulmonary pressure (Ptp) was determined by progressive increments in tidal volume (VT). A specially designed electronics relay circuit permitted this relationship to be obtained for points of no flow during tidal volume breathing: i.e., preinspiration (FRC); end inspiration (FRC + VT). The airways were dusted with powdered tantalum. Six airway divisions were identified: four CAW: trachea, main stem, lobar, segmental; and two PAW: subsegmental, and lobular. AP and lateral roentgenograms were obtained by standard technics and primary magnification (mag factor 2). Airway diameters were plotted as a function of transpulmonary pressure between 3 and 26 cmH2O with the diameter at total lung capacity expressed as 100%. The data show that: 1) there is significant distensibility above 5 cmH2O for all airways from the trachea to the lobular airways; 2) that the pressure-diameter plot is a linear plot for each airway from 3 to 26 cmH2O with R values between 0.846 and 0.957; 3) the peripheral lobular airways are more distensible than the central airways (P smaller than 0.05). We attribute the difference in distensibility of the peripheral lobular airways to their lack of cartilaginous support, and their decreased muscular support when compared to the CAW.  相似文献   

4.
We studied gas exchange in anesthetized ducks and geese artificially ventilated at normal tidal volumes (VT) and respiratory frequencies (fR) with a Harvard respirator (control ventilation, CV) or at low VT-high fR using an oscillating pump across a bias flow with mean airway opening pressure regulated at 0 cmH2O (high-frequency ventilation, HFV). VT was normalized to anatomic plus instrument dead space (VT/VD) for analysis. Arterial PCO2 was maintained at or below CV levels by HFV with VT/VD less than 0.5 and fR = 9 and 12 s-1 but not at fR = 6 s-1. For 0.4 less than or equal to VT/VD less than or equal to 0.85 and 3 s-1. less than or equal to fR less than or equal to 12 s-1, increased VT/VD was twice as effective as increased fR at decreasing arterial PCO2, consistent with oscillatory dispersion in a branching network being an important gas transport mechanism in birds on HFV. Ventilation of proximal exchange units with fresh gas due to laminar flow is not the necessary mechanism supporting gas exchange in HFV, since exchange could be maintained with VT/VD less than 0.5. Interclavicular and posterior thoracic air sac ventilation measured by helium washout did not change as much as expired minute ventilation during HFV. PCO2 was equal in both air sacs during HFV. These results could be explained by alterations in aerodynamic valving and flow patterns with HFV. Ventilation-perfusion distributions measured by the multiple inert gas elimination technique show increased inhomogeneity with HFV. Elimination of soluble gases was also enhanced in HFV as reported for mammals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Increasing minute ventilation of dry gas shifts the principal burden of respiratory heat and water losses from more proximal airway to airways farther into the lung. If these local thermal transfers determine the local stimulus for bronchoconstriction, then increasing minute ventilation of dry gas might also extend the zone of airway narrowing farther into the lung during hyperpnea-induced bronchoconstriction (HIB). We tested this hypothesis by comparing tantalum bronchograms in tracheostomized guinea pigs before and during bronchoconstriction induced by dry gas hyperpnea, intravenous methacholine, and intravenous capsaicin. In eight animals subjected to 5 min of dry gas isocapnic hyperpnea [tidal volume (VT) = 2-5 ml, 150 breaths/min], there was little change in the diameter of the trachea or the main stem bronchi up to 0.75 cm past the main carina (zone 1). In contrast, bronchi from 0.75 to 1.50 cm past the main carina (zone 2) narrowed progressively at all minute ventilations greater than or equal to 300 ml/min (VT = 2 ml). More distal bronchi (1.50-3.10 cm past the main carina; zone 3) did not narrow significantly until minute ventilation was raised to 450 ml/min (VT = 3 ml). The estimated VT during hyperpnea needed to elicit a 50% reduction in airway diameter was significantly higher in zone 3 bronchi [4.3 +/- 0.8 (SD) ml] than in zone 2 bronchi (3.5 +/- 1.1 ml, P less than 0.012).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of changing tidal volume (VT) and frequency (f) on the distribution of ventilation during high-frequency ventilation (HFV) were assessed from the washout of nitrogen-13 by positron emission tomography. Six dogs, anesthetized and paralyzed, were studied in the supine position during conventional ventilation (CV) and during HFV at f of 3, 6, and 9 Hz. In CV and HFV at 6 Hz, VT was selected to achieve eucapnic arterial partial pressure of CO2 (37 +/- 3 Torr). At 3 and 9 Hz, VT was proportionally changed so that the product of VT and f remained constant and equal to that at 6 Hz. Mean residence time (MRT) of nitrogen-13 during washout was calculated for apical, midheart, and basal transverse sections of the lung and further analyzed for gravity-dependent, cephalocaudal and radial gradients. An index of local alveolar ventilation per unit of lung volume, or specific ventilation (spV), was calculated as the reciprocal of MRT. During CV vertical gradients of regional spV were seen in all sections with ventral (nondependent) regions less ventilated than dorsal (dependent) regions. Regional nonuniformity in gas transport was greatest for HFV at 3 and 6 Hz and lowest at 9 Hz and during CV. During HFV, a central region at the base of the lungs was preferentially ventilated, resulting in a regional time-averaged tracer concentration equivalent to that of the main bronchi. Because the main bronchi were certainly receiving fresh gas, the presence of this preferentially ventilated area, whose ventilation increased with VT, strongly supports the hypothesis that direct convection of fresh gas is an important mechanism of gas transport during eucapnic HFV. Aside from the local effect of increasing overall lung ventilation, this central area probably served as an intermediate shuttle station for the transport of gas between mouth and deeper alveoli when VT was less than the anatomic dead space.  相似文献   

7.
The factors responsible for the apnea observed during high-frequency ventilation (HFV) were evaluated in 14 pentobarbital sodium-anesthetized cats. A multiple logistic regression analysis provided an estimate of the probability of apnea during HFV as a function of four respiratory variables: mean airway pressure (Paw), tidal volume (VT), frequency, and arterial PCO2 (PaCO2). When mean Paw was 2 cmH2O, PaCO2, VT, and their interaction contributed significantly to the probability of apnea during HFV. At a low value of PaCO2 (25 Torr), the probability of apnea had a minimum value of 0.19 and gradually increased toward 1.0 as VT increased from 0.5 to 7 ml/kg. At higher levels of PaCO2 (30 and 35 Torr) the probability of apnea was zero in the low range of VT but sharply approached 1.0 above a VT of approximately 2.0 ml/kg. However, when Paw was increased to 6 cmH2O, only PaCO2 was an important determinant of apnea. In this case, the probability of apnea was 0.51 when PaCO2 was 25 Torr but decreased to 0.22 when PaCO2 was raised to 25 Torr. At neither Paw was the probability of apnea dependent on frequency. These results suggest that chemoreceptor inputs, in addition to both static and dynamic lung mechanoreceptor afferents, are responsible for determining the output of the central respiratory centers during HFV.  相似文献   

8.
To identify a general relationship between eucapnic oscillatory flow (Vosc) and frequency (f) in high-frequency ventilation (HFV), we searched the literature for eucapnic HFV data in different mammalian species. We found suitable results for rat, rabbit, monkey, dog, human, and horse, which we expressed in terms of two dimensionless variables, Q = Vosc/Va and F = f/(VA/VD), with VA the alveolar ventilation and VD the volume of the conducting airways. The experimental HFV data define the linear regression equation in Q = 0.54 In F + 0.92 (R = 0.94). Krogh's equation for conventional ventilation (CV), Vosc = VA + fVD, in dimensionless terms becomes Q = 1 + F, which is valid for low F. The intersection of the CV and HFV equations at F = 5.0 defines a transition frequency, ft = 5.0 (VA/VD). At that point the alveolar ventilation per breath, VA/f, represents 20% of VD, and tidal volume (VT) equals 1.20 VD. For eucapnia ft ranges from 5.9 Hz in the rat to 0.9 Hz in the dog. The dimensional form of our HFV equation, VA = 0.13 (VT/VD)1.2 (VTf) is very similar to other empirical equations reported for dogs in noneucapnic settings. Therefore the dimensionless equation should also be valid within a species at noneucapnic settings.  相似文献   

9.
Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7-15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.  相似文献   

10.
Dose-response relationships for bronchoconstriction in response to aerosal histamine were assessed before and after vagotomy in 11 dogs anesthetized with barbiturates and in 9 dogs anesthetized with alpha-chloralose-urethan. The dose-response relationships following vagotomy were assessed during spontaneous ventilation and during muscular paralysis and mechanical ventilation with tidal volume (VT) similar to each animal's VT prior to vagotomy. After vagotomy the spontaneous VT of both groups increased but the VT of the alpha-chloralose-urethan group was significantly less than that of the barbiturate group. The histamine responsiveness of the animals anesthetized with barbiturates was significantly greater during mechanical ventilation when VT was reduced to prevagotomy levels compared with during spontaneous ventilation. In contrast, the histamine responsiveness of the alpha-chloralose-urethan group was not significantly changed by reducing VT to prevagotomy levels. In six other dogs anesthetized with pentobarbital sodium and studied after vagotomy, responsiveness to histamine aerosol during controlled ventilation with breaths of prevagotomy VT was greater than responsiveness during mechanical ventilation with large volume breaths given immediately afterward. Thus the magnitude of VT of dogs after vagotomy may influence airway responsiveness, and the influence of anesthetic agents on airway responsiveness after vagotomy may in part be due to their effects on VT. Furthermore, bronchodilation accompanying large volume ventilation persists after vagotomy, suggesting that it is not exclusively mediated by changes in parasympathetic activity.  相似文献   

11.
It has been suggested that the increase in inspiratory flow rate caused by a decrease in the inspiratory-to-expiratory time ratio (I:E) at a constant tidal volume (VT) could increase the efficiency of ventilation in high-frequency ventilation (HFV). To test this hypothesis, we studied the effect of changing I:E from 1:1 to 1:4 on steady-state alveolar ventilation (VA) at a given VT and frequency (f) and at a constant mean lung volume (VL). In nine anesthetized, paralyzed, supine dogs, HFV was performed at 3, 6, and 9 Hz with a ventilator that delivered constant inspiratory and expiratory flow rates. Mean airway pressure was adjusted so that VL was maintained at a level equivalent to that of resting FRC. At each f and one of the I:E chosen at random, VT was adjusted to obtain a eucapnic steady state [arterial pressure of CO2 (PaCO2) = 37 +/- 3 Torr]. After 10 min of each HFV, PaCO2, arterial pressure of O2 (PaO2), and CO2 production (VCO2) were measured, and I:E was changed before repeating the run with the same f and VT. VA was calculated from the ratio of VCO2 and PaCO2. We found that the change of I:E from 1:1 to 1:4 had no significant effects on PaCO2, PaO2, and VA at any of the frequencies studied. We conclude, therefore, that the mechanism or mechanisms responsible for gas transport during HFV must be insensitive to the changes in inspiratory and expiratory flow rates over the VT-f range covered in our experiments.  相似文献   

12.
A comparison of the dose-response behavior of canine airways and parenchyma   总被引:1,自引:0,他引:1  
We compared the histamine responsiveness of canine airways and parenchymal tissues in six anesthetized paralyzed open-chest mongrel dogs, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue viscance (Vti). Pressure was measured during tidal breathing (frequency was 0.3 Hz) at the trachea and in three alveolar regions by use of alveolar capsules. Measurements were taken before and after the delivery of increasing concentrations of aerosolized histamine (0.1-30 mg/ml). We found that Vti accounted for 78 +/- 8% of RL under base-line conditions; this proportion remained relatively constant throughout the histamine concentration-response curve. There was a significant correlation between percent change in Vti and percent change in Raw at all levels of histamine-induced constriction (P less than 0.001). Moreover, the sensitivity of the tissues and airways (defined as the concentration of histamine required to double resistance) was remarkably similar. We conclude that, at this frequency of ventilation, Vti accounts for the major portion of RL both under base-line conditions and after histamine-induced constriction. Although increases in RL cannot be attributed solely to events occurring in the airways, the close correlation between changes in Raw and Vti and the similar sensitivities of the two support the use of indexes reflecting changes in airway caliber as an indicator of overall lung histamine responsiveness.  相似文献   

13.
Alveolar ventilation during high-frequency ventilation (HFV) was estimated from the washout of the positron-emitting isotope (nitrogen-13-labeled N2) from the lungs of anesthetized paralyzed supine dogs by use of a positron camera. HFV was delivered at a mean lung volume (VL) equal to the resting functional residual capacity with a ventilator that generated tidal volumes (VT) between 30 and 120 ml, independent of the animal's lung impedance, at frequencies (f) from 2 to 25 Hz, with constant inspiratory and expiratory flows and an inspiration-to-expiration time ratio of unity. Specific ventilation (SPV), which is equivalent to ventilation per unit of compartment volume, was found to follow closely the relation: SPV = 1.9(VT/VL)2.1 X f. From this relation and from arterial PCO2 measurements we found an expression for the normocapnic settings of VT and f, given VL and body weight (W). We found that the VL was an important normalizing parameter in the sense that VT/VL yielded a better correlation (r = 0.91) with SPV/f than VT/W (r = 0.62) or VT alone (r = 0.8).  相似文献   

14.
We evaluated the effect of pulmonary edema on the frequency (f) and tidal volume (VT) dependences of respiratory system mechanical properties in the normal ranges of breathing. We measured resistance and elastance of the lungs (RL and EL) and chest wall of four anesthetized-paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz), delivered at a constant mean airway pressure. Measurements were made before and after severe pulmonary edema was produced by injection of 0.06 ml/kg oleic acid into the right atrium. Chest wall properties were not changed by the injection. Before oleic acid, EL increased slightly with increasing f in each dog but was independent of VT. RL decreased slightly and was independent of VT from 0.2 to 0.4 Hz, but above 0.4 Hz it tended to increase with increasing flow, presumably due to the airway contribution. After oleic acid injection, EL and RL increased greatly. Large negative dependences of EL on VT and of RL on f were also evident, so that EL and RL after oleic acid changed two- and fivefold, respectively, within the ranges of f and VT studied. We conclude that severe pulmonary edema changes lung properties so as to make behavior VT dependent (i.e., nonlinear) and very frequency dependent in the normal range of breathing.  相似文献   

15.
The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.  相似文献   

16.
Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.  相似文献   

17.
We delivered controlled radio frequency energy to the airways of anesthetized, ventilated dogs to examine the effect of this treatment on reducing airway narrowing caused by a known airway constrictor. The airways of 11 dogs were treated with a specially designed bronchial catheter in three of four lung regions. Treatments in each of the three treated lung regions were controlled to a different temperature (55, 65, and 75 degrees C); the untreated lung region served as a control. We measured airway responsiveness to local methacholine chloride (MCh) challenge before and after treatment and examined posttreatment histology to 3 yr. Treatments controlled to 65 degrees C as well as 75 degrees C persistently and significantly reduced airway responsiveness to local MCh challenge (P < or = 0.022). Airway responsiveness (mean percent decrease in airway diameter after MCh challenge) averaged from 6 mo to 3 yr posttreatment was 79 +/- 2.2% in control airways vs. 39 +/- 2.6% (P < or = 0.001) for airways treated at 65 degrees C, and 26 +/- 2.7% (P < or = 0.001) for airways treated at 75 degrees C. Treatment effects were confined to the airway wall and the immediate peribronchial region on histological examination. Airway responsiveness to local MCh challenge was inversely correlated to the extent of altered airway smooth muscle observed in histology (r = -0.54, P < 0.001). We conclude that the temperature-controlled application of radio frequency energy to the airways can reduce airway responsiveness to MCh for at least 3 yr in dogs by reducing airway smooth muscle contractility.  相似文献   

18.
The nonlinearity of lung tissues and airways was studied in six anesthetized and paralyzed open-chest dogs by means of 0.1-Hz sinusoidal volume forcing at mean transpulmonary pressures (Ptp) of 5 and 10 cmH2O. Lung resistance (RL) and elastance (EL) were determined in a 32-fold range (15-460 ml) of tidal volume (VT), both by means of spectrum analysis at the fundamental frequency and with conventional time-domain techniques. Alveolar capsules were used to separate the tissue and airway properties. A very small amplitude dependence was found: with increasing VT, the frequency-domain estimates of RL decreased by 5.3 and 14%, whereas EL decreased by 20 and 22% at Ptp = 5 and 10 cmH2O, respectively. The VT dependences of the time-domain estimates of RL were higher: 10.5 and 20% at Ptp = 5 and 10 cmH2O, respectively, whereas EL remained the same. The airway resistance increased moderately with flow amplitude and was smaller at the higher Ptp level. Analysis of the harmonic distortions of airway opening pressure and the alveolar pressures indicated that nonlinear harmonic production is moderate even at the highest VT and that VT dependence is homogeneous throughout the tissues. In three other dogs it was demonstrated that VT dependences of RL and EL were similar in situ and in isolated lungs at both Ptp levels.  相似文献   

19.
Washout of insoluble inert test gases of different diffusivity (He and SF6 or He and Ar) from dog lungs was studied during high-frequency ventilation (HFV). Test gas equilibrium and subsequent washout were performed with HFV, succeeding measurements being performed at different stroke volumes (1.5-2.5 ml/kg body wt), oscillation frequencies (10-30 Hz), and with different lung volumes (32-74 ml X kg-1). Test gas concentrations were continuously measured by a mass spectrometer. The time course of washout could be described as the sum of two exponentials. There were no consistent differences in the time courses of washout between He and SF6 or between He and Ar. It is concluded that gas mixing in the airways during HFV is not significantly limited by diffusion, and this is suggested to apply during HFV to steady-state transport of respiratory gases (e.g., O2 and CO2) as well as to the transient state of inert gas washout.  相似文献   

20.
We analyzed published measurements of the bronchial circulation and airway wall (Anderson JC, Bernard SL, Luchtel DL, Babb AL, and Hlastala MP. Respir Physiol Neurobiol 132: 329-339, 2002) and determined that the radial distribution of bronchial capillary cross-sectional area was fractal. We limited our analysis to bronchial capillaries, diameter < or =10 mum, that resided between the epithelial basement membrane and adventitia-alveolar boundary, the airway wall tissue. Thirteen different radial distributions of capillary-to-tissue area were constructed simply by changing the number of annuli (i.e., the annular size) used to form each distribution. For the 13 distributions created, these annuli ranged in size from to of the size of the airway wall area. Radial distributions were excluded from the fractal analysis if the sectioning procedure resulted in an annulus with a radial thickness less than the diameter of a capillary. To determine the fractal dimension for a given airway, the coefficient of variation (CV) for each distribution was calculated, and ln(CV) was plotted against the logarithm of the relative piece area. For airways with diameter >2.4 mm, this relationship was linear, which indicated the radial distribution of bronchial capillary cross-sectional area was fractal with an average fractal dimension of 1.27. The radial distribution of bronchial capillary cross-sectional area was not fractal around airways with diameter <1.5 mm. We speculated on how the fractal nature of this circulation impacts the distribution of bronchial blood flow and the efficiency of mass transport during health and disease. A fractal analysis can be used as a tool to quantify and summarize investigations of the bronchial circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号