共查询到20条相似文献,搜索用时 15 毫秒
1.
This review deals with various aspects of the biosynthesis of carotenoids in chromoplasts and chloroplasts of green algae and higher plants. Two pathways of biosynthesis of the key C5-isoprene units are considered: 1) from acetate via mevalonate (C6) followed by its enzymatic conversions to isopentenyl diphosphate (C5); 2) from glucose via formation of glyceraldehyde-3-phosphate (C3) and pyruvate and their condensation via intermediary products to isopentenyl diphosphate (C5). Subsequent biosynthesis of carotenoids from isopentenyl diphosphate (C5) and dimethylallyl diphosphate (C5) involves a common route including their conversion into geranyl diphosphate (C10), farnesyl diphosphate (C15), geranylgeranyl diphosphate (C20), and synthesis of phytoene (C40). All stages of phytoene desaturation accompanied by formation of acyclic compounds such as zeta-carotene, neurosporene, and lycopene and their cyclization to alpha-, beta-, and epsilon-carotenes are considered in detail. Formation of xanthophylls in chloroplasts and chromoplasts involves sequential oxidations yielding hydroxy, epoxy, and oxo groups. Genetic control of biosynthesis of carotenoids is considered. 相似文献
2.
Photosynthetically active chloroplasts retaining high rates of fatty acid synthesis from [1- 14C]acetate were purified from leaves of both 16:3 ( Solanum nodiflorum, Chenopodium album) and 18:3 plants ( Amaranthus lividus, Pisum sativum). A comparison of lipids into which newly synthesized fatty acids were incorporated revealed that, in 18:3 chloroplasts, enzymic activities catalyzing the conversion of phosphatidate to diacylglycerol and of diacylglycerol to monogalactosyl diacylglycerol (MGD) were significantly less active than in 16:3 chloroplasts. In contrast, labeling rates of MGD from UDP-[ 14C]gal were similar for both types of chloroplasts. The composition and positional distribution of labeled fatty acids within the glycerides synthesized by isolated 16:3 and 18:3 chloroplasts were similar and in each case only a C18/C16 diacylglycerol backbone was synthesized. In nodiflorum chloroplasts, C18:1/C16:0 MGD assembled de novo was completely desaturated to the C18:3/C16:3 stage. Whereas newly synthesized C18/C18 MGD could not be detected in any of these chloroplasts if incubated with [14C]acetate after isolation, chloroplasts isolated from acetate-labeled leaves contained MGD with labeled C18 fatty acids at both sn-1 and sn-2 positions. Taken together, these results provide further evidence on an organellar level for the operation of pro- and eucaryotic pathways in the biosynthesis of MGD in different groups of plants. 相似文献
3.
Chloroplasts highly active in the synthesis of long-chain fatty acids from [1- 14C]acetate were prepared from leaves of Solanum nodiflorum, Chenopodium quinoa, Carthamus tinctorius, and Pisum sativum. These preparations were used to test whether the various additions to incubation media found to stimulate the synthesis of particular lipid classes in vitro by Spinacia oleracea chloroplasts were applicable generally. Chloroplasts from 18:3 plants incorporated a greater proportion of radioactivity into unesterified fatty acids under control conditions than did those from 16:3 plants. Supplying exogenous sn-glycerol 3-phosphate or Triton X-100 to chloroplasts increased the synthesis of glycerolipids in all cases and accentuated the capacity of chloroplasts from 18:3 plants to accumulate phosphatidic acid rather than the diacylglycerol accumulated by chloroplasts from 16:3 plants. The UDP-galactose-dependent synthesis of labeled diacylgalactosylglycerol was much less active in incubations of chloroplasts from 18:3 plants also containing sn-glycerol 3-phosphate and Triton X-100 compared with similar incubations from 16:3 plants. Exogenous CoA stimulated total fatty acid synthesis in all chloroplast preparations and the further addition of ATP diverted radioactivity from the unesterified fatty acid to acyl-CoA. The results have been discussed in terms of the two pathway hypothesis for lipid synthesis in leaves. 相似文献
4.
Labelling of plastids with fluorescent proteins has revealed the diversity of their sizes and shapes in different tissues of vascular plants. Stromules, stroma-filled tubules comprising thin extensions of the stroma surrounded by the double envelope membrane, have been observed to emanate from all major types of plastid, though less common on chloroplasts. In some tissue types, stromules are highly dynamic, forming, shrinking, attaching, releasing and fragmenting. Stromule formation is negatively affected by treatment of tissue with cytoskeletal inhibitors. Plastids can be connected by stromules, through which green fluorescent protein (GFP) and fluorescently tagged chloroplast protein complexes have been observed to flow. Within the highly viscous stroma, proteins traffic by diffusion as well as by an active process of directional travel, whose mechanism is unknown. In addition to exchanging materials between plastids, stromules may also serve to increase the surface area of the envelope for import and export, reduce diffusion distance between plastids and other organelles for exchange of materials, and anchor the plastid onto attachment points for proper positioning with the plant cell. Future studies should reveal how these functions may affect plants in adapting to the challenges of a changing environment. 相似文献
5.
Extracts from Artemisia annua and Santolina chamaecyparissus converted 14C-labelled IPP, DMAPP and DMVC into artemisia ketone, its corresponding alcohol, lavandulol and trans-chrysanthemyl alcohol with up to 12.0 % incorporation of tracer. DMVC was the most effective precursor under standard conditions and led to unequal distribution of tracer in the C-5 moieties. The same extracts interconverted cis and trans-chrysanthemyl alcohols and their pyrophosphates, artemisia ketone, and artemisyl alcohol in up to 10·4% yields, but geraniol, nerol and linalol or their pyrophosphates were not precursors of any of these compounds. Formation of artemisia ketone and its alcohol from C-5 intermediates was enhanced by NAD + and NADP + but was unaffected by absence of oxygen. These co-factors did not affect the yields of lavandulol or trans-chrysanthemyl alcohol. These observations suggest closely related biogenetic pathways to the three irregular skeltons that do not involve the usual C-10 intermediates of monoterpene biosynthesis: i.e. the biogenetic isoprene rule is not obeyed. 相似文献
11.
The glycerolipid composition of Ribes nigrum (blackcurrant) leaves was determined. The total fatty acid composition was unusual in that alpha-linolenic acid (alpha-18:3) occurred together with cis-7,10,13-hexadecatrienoic acid (16:3) and lower amounts of stearidonic acid (18:4) and gamma-linolenic acid (gamma-18:3). Monogalactosyldiacylglycerol contained the highest proportion of 16:3 with less in digalactosyldiacylglycerol. gamma-18:3 and 18:4 were present in all lipids and 18:4 was always greater than gamma-18:3. The highest percentages of gamma-18:3 and 18:4 were in phosphatidylcholine, but phosphatidylglycerol was particularly low in these acids. In summary, the lipid composition was largely typical of 16:3 plants but there was a minor contribution typical of 18:4 plants. The possibility of three pathways for glycolipid biosynthesis is discussed. 相似文献
12.
Phytochemistry Reviews - Salidroside is a precious phenylethanoid glycoside derived from Rhodiola genus plants, which possesses a broad spectrum of biological properties for application in the... 相似文献
13.
Degradation of (+)-isothujone biosynthesized by Tanacetum vulgare or Thuja plicata from acetate-[1- 14C], -[2- 14C] and -[2- 3H 3] or from CO 2-[14C] at physiological concentration revealed a pattern of asymmetric labelling whereby tracer predominantly (72–98% resided in that part of the skeleton derived from IPP. This is similar to the patterns previously obtained for uptake of MVA-[2- 14C] but differed from those reported in other species with acetate-[ 14C] as precursor. Within the IPP-derived moiety the 3 parts derived from acetate units were not equivalently labelled. Partial degradations of geraniol and (+)-pulegone formed in Pelargonium graveolens and Mentha pulegium after uptake of 14C-labelled acetate or CO 2 showed that the C-2 units of the skeletons of these monoterpenes were also labelled to widely differing extents and these patterns persisted over a range of feeding and seasonal conditions. These results suggest that metabolic pools of acetyl-CoA and/or acetoacetyl-CoA exist in these plants. The general occurrence of such pools and the consequent nonequivalent labelling patterns in secondary metabolism could invalidate biosynthetic conclusions drawn from partial degradations of labelled natural products. 相似文献
14.
Two kinds of plants may be distinguished according to their (n–3) trienoic fatty acid composition in photosynthetic tissues. The cis-7,10,13-hexadecatrienoic acid\ cis-9,12,15-octadecatrienoic acid balance directly reflects the biosynthesis pathways (a plastidial one and an extra-plastidial one) of chloroplastic lipids. We analysed the correlation between the existence of these pathways and the evolutionary classification of Cormophytes (particularly Angiosperms). By using cis-7,10,13-hexadecatrienoic acid as a marker for the existence of the plastidial pathway, we studied the overall fatty acid composition of 468 plant species (280 already described in the literature and 188 new ones) distributed among 141 botanical families. The data strongly suggest that the plastidial pathway was lost during evolution and that, in the case of dicotyledonous plants, this loss probably occurred independently and at different rates. The data are also discussed from an environmental and chemotaxonomic point of view. 相似文献
15.
Phytochemistry Reviews - Amaryllidaceae alkaloids are a group of specialized metabolites found predominantly in the Amaryllidaceae plant family. Approximately 600 naturally occurring Amaryllidaceae... 相似文献
16.
To understand the early steps of C(27) brassinosteroid biosynthesis, metabolic experiments were performed with Arabidopsis thaliana and Nicotiana tabacum seedlings, and with cultured Catharanthus roseus cells. [26, 28-2H(6)]Campestanol, [26-2H(3)]cholesterol, and [26-2H(3)]cholestanol were administered to each plant, and the resulting metabolites were analyzed by gas chromatography-mass spectrometry. In all the species examined, [2H(3)]cholestanol was identified as a metabolite of [2H(6)]campestanol, and [2H(3)]cholest-4-en-3-one and [2H(3)]cholestanol were identified as metabolites of [2H(3)]cholesterol. This study revealed that cholestanol (C(27) sterol) was biosynthesized from both cholesterol (C(27) sterol) and campestanol (C(28) sterol). It was also demonstrated that cholestanol was converted to 6-oxocholestanol, and campestanol was converted to 6-oxocampestanol. 相似文献
17.
Plant cyclotides are a large family of naturally occurring circular proteins that are produced from linear precursors containing one, two or three cyclotide domains. The mechanism of excision of the cyclotide domains and ligation of the free N- and C-termini to produce the circular peptides has not been elucidated. Here, we investigate production of the prototypic cyclotide kalata B1 from the precursor Oak1 from the African plant Oldenlandia affinis. Immunoprecipitation experiments and MALDI-TOF mass spectrometry analysis showed that O. affinis only produces mature kalata B1, whereas transgenic Arabidopsis thaliana, Nicotiana tabacum and Nicotiana benthamiana produced both linear and circular forms. Circular peptides were not produced when a highly conserved asparagine residue at the C-terminal processing site of the cyclotide domain was replaced with an alanine or an aspartate residue, or when the conserved C-terminal tripeptide motif was truncated. We propose that there are two processing pathways in planta: one to produce the mature cyclotide and the other to produce linear variants that ultimately cannot be cyclized. 相似文献
19.
由于植物基因组的快速发展,研究者借助酵母和细菌等微生物的相关信息,使大多数水溶性维生素在植物体内的生物合成途径得以在分子水平上阐明.本文就近年来植物水溶性维生素的生物合成途径、合成场所等研究进展进行了概述,并就植物和微生物水溶性维生素合成途径的关系进行了比较. 相似文献
20.
Salicylic acid (SA) is an important signal molecule in plants. Two pathways of SA biosynthesis have been proposed in plants. Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by the activity of phenylalanine ammonia lyase (PAL). Silencing of PAL genes in tobacco or chemical inhibition of PAL activity in Arabidopsis, cucumber and potato reduces pathogen-induced SA accumulation. Genetic studies, on the other hand, indicate that the bulk of SA is produced from isochorismate. In bacteria, SA is synthesized from chorismate through two reactions catalyzed by isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL). Arabidopsis contains two ICS genes but has no gene encoding proteins similar to the bacterial IPL. Thus, how SA is synthesized in plants is not fully elucidated. Two recently identified Arabidopsis genes, PBS3 and EPS1, are important for pathogen-induced SA accumulation. PBS3 encodes a member of the acyl-adenylate/thioester-forming enzyme family and EPS1 encodes a member of the BAHD acyltransferase superfamily. PBS3 and EPS1 may be directly involved in the synthesis of an important precursor or regulatory molecule for SA biosynthesis. The pathways and regulation of SA biosynthesis in plants may be more complicated than previously thought.Key words: salicylic acid biosynthesis, isochorismate synthase, phenylalanine ammonia lyase 相似文献
|