首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   

2.
MEKK1 binds raf-1 and the ERK2 cascade components   总被引:8,自引:0,他引:8  
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.  相似文献   

3.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

4.
Zhao LJ  Zhao P  Chen QL  Ren H  Pan W  Qi ZT 《Cell proliferation》2007,40(4):508-521
OBJECTIVE: Hepatitis C virus (HCV) is a major pathogenic factor of liver diseases. During HCV infection, interaction of the envelope protein E2 of the virion, with target cells, is a crucial process for viral penetration into the cell and its propagation. We speculate that such interaction may trigger early signalling events required for HCV infection. MATERIALS AND METHODS: Human liver cell line L-02 was treated with HCV E2. The kinase phosphorylation levels of mitogen-activated protein kinase (MAPK) signalling pathways in the treated cells were analyzed by Western blotting. The proliferation of the E2-treated cells was evaluated by MTT assay. RESULTS: HCV E2 was shown to be an efficient activator for MAPK pathways. Levels of phosphorylation of upstream kinases Raf-1 and MEK1/2 were seen to be elevated following E2 treatment and similarly, phosphorylation levels of downstream kinases MAPK/ERK and p38 MAPK also increased in response to E2 treatment, and specificity of kinase activation by E2 was confirmed. E2-induced MAPK/ERK activation was inhibited by the MEK1/2 inhibitor U0126 in a concentration-dependent manner. Blockage of relevant cellular receptors reduced activation of Raf-1, MEK1/2, MAPK/ERK and p38 MAPK by E2, indicating efflux of the E2 signal from extracellular to the intracellular spaces. Thus, kinase cascades of MAPK pathways were continuously affected by E2 presence. Moreover, enhancement of cell proliferation by E2 appeared to be associated with the dynamic phosphorylation of MAPK/ERK and p38 MAPK. CONCLUSION: These results suggest that MAPK signalling pathways triggered by E2 may be a potential target for prevention of HCV infection.  相似文献   

5.
c-Jun N-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1) (also termed JNK-interacting protein 3; JIP3) is a member of a family of scaffold factors for the mitogen-activated protein kinase (MAPK) cascades, and it also forms a complex with focal adhesion kinase (FAK). Here we demonstrate that JSAP1 serves as a cooperative scaffold for activation of JNK and regulation of cell migration in response to fibronectin (FN) stimulation. JSAP1 mediated an association between FAK and JNK, which was induced by either co-expression of Src or attachment of cells to FN. Complex formation of FAK with JSAP1 and p130 Crk-associated substrate (p130(Cas)) resulted in augmentation of FAK activity and phosphorylation of both JSAP1 and p130(Cas), which required p130(Cas) hyperphosphorylation and was abolished by inhibition of Src. JNK activation by FN was enhanced by JSAP1, which was suppressed by disrupting the FAK/p130(Cas) pathway by expression of a dominant-negative form of p130(Cas) or by inhibiting Src. We also documented the co-localization of JSAP1 with JNK and phosphorylated FAK at the leading edge and stimulation of cell migration by JSAP1 expression, which depended on its JNK binding domain and was suppressed by inhibition of JNK. The level of JSAP1 mRNA correlated with advanced malignancy in brain tumors, unlike other JIPs. We propose that the JSAP1.FAK complex functions cooperatively as a scaffold for the JNK signaling pathway and regulator of cell migration on FN, and we suggest that JSAP1 is also associated with malignancy in brain tumors.  相似文献   

6.
Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation.  相似文献   

7.
8.
Microtubule inhibitors are widely used in cancer chemotherapy, but the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. Because members of the mitogen-activated protein kinase (MAPK) family have been implicated in regulation of cell survival and cell death, we examined the extent and kinetics of activation of JNK, ERK, and p38 MAPKs in response to treatment of KB-3 carcinoma cells with several microtubule inhibitors. All four agents tested (vinblastine, vincristine, Taxol, and colchicine) caused significant (6- to 13-fold) activation of JNK, concomitant inactivation of ERK, and a reduction in basal p38 MAPK activity. JNK activation and ERK inactivation occurred prior to caspase 3 activation. The microtubule inhibitors also induced phosphorylation of Raf-1 kinase. SEK-1, upstream of JNK, was also activated and phosphorylated in response to the microtubule inhibitors, and sustained phosphorylation of three endogenous JNK substrates (c-Jun, ATF-2, and JunD) was observed. By comparison, the antitumor agent doxorubicin induced activation of JNK and p38 but had no effect on ERK activity or Raf-1. These data demonstrate that microtubule inhibitors elicit distinct and specific effects on MAPK-mediated signaling pathways and suggest in particular that coordinate and reciprocal alterations in JNK and ERK activities are important facets of the cellular response to microtubule disruption.  相似文献   

9.
Eukaryotic cells respond to extracellular stimuli, such as viruses, by recruiting signal transduction pathways, many of which are mediated through activation of distinct mitogen-activated protein kinase (MAPK) cascades and activation of transductional regulation factors. The best characterized of this pathway are the extracellular signal regulated kinase (ERK), the c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK), and the p38 MAPK cascade. Herpes simplex virus type 1 (HSV-1) encodes at least 11 envelope glycoproteins, which alone or in concert play different roles in viral adsorption, entry, cell-to-cell spread, and immune evasion. Of these proteins, three are designated glycoprotein B (gB), glycoprotein D (gD), and the gH/gL heterodimer, are clearly involved in attachment and entry, and therefore possible candidates in inducing early cellular activation.Nevertheless, the precise role of each glycoprotein and the cellular factor involved remain elusive. The signal transduction pathways involved, and the outcome of cellular activation on viral entry or postentry events, are still to be elucidated. To better understand the role of signal transduction pathways and phosphorylation events in HSV-1 entry, synthetic peptides modeled on HSV-1 gH were synthesized and tested for MEK1-MEK2/MAPK cascade activation. Our results show a major involvement of the JNK pathway in the intracellular signal transmission after stimulation with gH HSV-1 peptides.  相似文献   

10.
Kalmes A  Deou J  Clowes AW  Daum G 《FEBS letters》1999,444(1):71-74
SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imi dazole) is widely used as a specific inhibitor of p38 mitogen-activated protein kinase (MAPK). Here, we report that SB203580 activates the serine/threonine kinase Raf-1 in quiescent smooth muscle cells in a dose-dependent fashion. The concentrations of SB203580 required lie above those necessary to inhibit p38 MAPK and we were unable to detect basal levels of active p38 MAPK. SB203580 does not directly activate Raf-1 in vitro, and fails to activate Ras, MEK, and ERK in intact cells. In vitro, however, SB203580-stimulated Raf-1 activates MEK1 in a coupled assay. We conclude that activation of Raf-1 by SB203580 is not mediated by an inhibition of p38 MAPK, is Ras-independent, and is uncoupled from MEK/ERK signaling.  相似文献   

11.
12.
13.
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiomyocytes. Both necessary and sufficient roles have been described for the mitogen activated protein kinase(1) (MAPK) signaling pathway, specific protein kinase C (PKC) isoforms, and calcineurin. Here we investigate the interdependence between calcineurin, MAPK, and PKC isoforms in regulating cardiomyocyte hypertrophy using three separate approaches. Hearts from hypertrophic calcineurin transgenic mice were characterized for PKC and MAPK activation. Transgenic hearts demonstrated activation of c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2), but not p38 MAPK factors. Calcineurin transgenic hearts demonstrated increased activation of PKCalpha, beta(1), and theta, but not of epsilon, beta(2), or lambda. In a second approach, cultured cardiomyocytes were infected with a calcineurin adenovirus to induce hypertrophy and the effects of pharmacologic inhibitors or co-infection with a dominant negative adenovirus were examined. Calcineurin-mediated hypertrophy was prevented with PKC inhibitors, Ca(2+) chelation, and attenuated with a dominant negative SEK-1 (MKK4) adenovirus, but inhibitors of ERK or p38 activation had no effect. In a third approach, we examined the activation of MAPK factors and PKC isoforms during the progression of load-induced hypertrophy in aortic banded rats with or without cyclosporine. We determined that inhibition of calcineurin activity with cyclosporine prevented PKCalpha, theta, and JNK activation, but did not affect PKCepsilon, beta, lambda, ERK1/2, or p38 activation. Collectively, these data indicate that calcineurin hypertrophic signaling is interconnected with PKCalpha, theta, and JNK in the heart, while PKCepsilon, beta, lambda, p38, and ERK1/2 are not involved in calcineurin-mediated hypertrophy.  相似文献   

14.
In previous studies we have found that oncogenic (Val 12)-ras-p21 induces Xenopus laevis oocyte maturation that is selectively blocked by two ras-p21 peptides, 35-47, also called PNC-7, that blocks its interaction with raf, and 96-110, also called PNC-2, that blocks its interaction with jun-N-terminal kinase (JNK). Each peptide blocks activation of both JNK and MAP kinase (MAPK or ERK) suggesting interaction between the raf-MEK-ERK and JNK-jun pathways. We further found that dominant negative raf blocks JNK induction of oocyte maturation, again suggesting cross-talk between pathways. In this study, we have undertaken to determine where these points of cross-talk occur. First, we have immunoprecipitated injected Val 12-Ha-ras-p21 from oocytes and found that a complex forms between ras-p21 raf, MEK, MAPK, and JNK. Co-injection of either peptide, but not a control peptide, causes diminished binding of ras-p21, raf, and JNK. Thus, one site of interaction is cooperative binding of Val 12-ras-p21 to raf and JNK. Second, we have injected JNK, c-raf, and MEK into oocytes alone and in the presence of raf and MEK inhibitors and found that JNK activation is independent of the raf-MEK-MAPK pathway but that activated JNK activates raf, allowing for activation of ERK. Furthermore, we have found that constitutively activated MEK activates JNK. We have corroborated these findings in studies with isolated protein components from a human astrocyte (U-251) cell line; that is, JNK phosphorylates raf but not the reverse; MEK phosphorylates JNK but not the reverse. We further have found that JNK does not phosphorylate MAPK and that MAPK does not phosphorylate JNK. The stress-inducing agent, anisomycin, causes activation of JNK, raf, MEK, and ERK in this cell line; activation of JNK is not inhibitable by the MEK inhibitor, U0126, while activation of raf, MEK, and ERK are blocked by this agent. These results suggest that activated JNK can, in turn, activate not only jun but also raf that, in turn, activates MEK that can then cross-activate JNK in a positive feedback loop.  相似文献   

15.
JSAP1 (also termed JIP3) is a scaffold protein that interacts with specific components of the JNK signaling pathway. Apoptosis signal-regulating kinase (ASK) 1 is a MAP kinase kinase kinase that activates the JNK and p38 mitogen-activated protein (MAP) kinase cascades in response to environmental stresses such as reactive oxygen species. Here we show that JSAP1 bound ASK1 and enhanced ASK1- and H(2)O(2)-induced JNK activity. ASK1 phosphorylated JSAP1 in vitro and in vivo, and the phosphorylation facilitated interactions of JSAP1 with SEK1/MKK4, MKK7 and JNK3. Furthermore, ASK1-dependent phosphorylation was required for JSAP1 to recruit and thereby activate JNK in response to H(2)O(2). We thus conclude that JSAP1 functions not only as a simple scaffold, but it dynamically participates in signal transduction by forming a phosphorylation-dependent signaling complex in the ASK1-JNK signaling module.  相似文献   

16.
Paclitaxel is a widely used chemotherapeutic agent and is known to induce programmed cell death (apoptosis) in a variety of cell types, but the precise underlying mechanisms are poorly understood. To elucidate these mechanisms, we challenged human esophageal squamous cancer cell lines with paclitaxel and investigated its effects upon signal transduction pathways. Physiologically relevant concentrations of paclitaxel (1-1,000 nm) induced apoptosis. All three mitogen-activated protein kinase (MAPK) family members, c-Jun N-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK) were activated upon paclitaxel treatment. Interestingly, JNK activation and p38 MAPK activation were delayed and peaked at 48 h, whereas ERK activity was sustained over 72 h. In addition, Ras activation and MAPK/ERK kinase (MEK) phosphorylation were observed in concordance with ERK activation. While ERK activation was completely ablated by MEK inhibitors, immunoprecipitation and Western blot analysis revealed that neither MEK-1 nor MEK-2 was involved, but instead another member of the MEK family may potentially participate. Although pretreatment with a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone rescued the cell death, it did not prevent Ras or ERK activation. Furthermore, inhibition of JNK, p38 MAPK, or MEK did not alter PARP cleavage and the cell death induced by paclitaxel. These results in aggregate suggest that the delayed activation of JNK, p38 MAPK, and ERK was not linked to activation of the cell death machinery.  相似文献   

17.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

18.
MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.  相似文献   

19.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号