首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In internodal stem explants of Coleus blumei (BENTH.) colchicine(0.35 %) blocked IAA-induced wound vessel member formation butpermitted abnormal xylogenesis associated with the vascularbundles. Xylem elements differentiated in the presence of colchicinepossessed abnormal asymmetrical secondary wall sculpturing.Colchicine (0.01 %) permitted wound vessel ember formation withthe same type of abnormal wall sculpturing. These results suggestthe partial inactivation or reorientation of the microtubulesassociated with microfibril deposition in prexylem cells bycolchicine. 1 Fulbright Professor of Botany, 1967–68. Permanent address:Department of Biological Sciences, University of Idaho, Moscow,Idaho, 83843, U. S. A.  相似文献   

2.
If segments of Impatiens sultani stem are explanted and incubated,separation layers often form across them and lead to abscission.To test the suggested role of auxin concentration in controllingthe position of abscission sites, explants were labelled byapplying [14C]IAA to the shoot tip 4 h prior to explanting;transport of auxin applied in this way seems to resemble thatof endogenous auxin. During subsequent incubation of explantsfor 20 h, basipetal transport resulted in 14C accumulating justabove the base of the explants (nearly 80 % in the bottom 4mm of 24 mm explants). In internodal explants that had beenwounded at explanting by incising one side so as to sever avascular bundle, and in nodal explants with the leaf removed,the 14C also accumulated just above the wound or node to abouttwice the concentration otherwise expected; this accumulationwas probably due to basipetal transport being impeded by vasculardiscontinuity at the wound or node. Accumulation just abovethe base, or above a wound or node, resulted in gradients of14C concentration (presumably reflecting endogenous auxin concentration)decreasing in the morphologically upward direction at each ofthese three positions where abscission sites tend to occur. Impatiens sultani, abscission, auxin, IAA, node, polarized transport, positional control, separation layer, wounding  相似文献   

3.
Role of Cytokinin in Vessel Regeneration in Wounded Coleus Internodes   总被引:1,自引:0,他引:1  
Cytokinin was found to be a controlling or limiting factor invessel regeneration around a wound in internodes of Coleus blumeiBenth. in which the endogenous cytokinin level was minimized.The cytokinin was applied in aqueous solution to the base ofexcised, mature internodes that had an active vascular cambium.Each internode also received IAA in lanolin at its apical end.Under low (0.1 %, w/w) or high (10%, w/w) auxin concentrations,the control internodes (without exogenous cytokinin) exhibitedsmall amounts of vessel regeneration. At appropriate concentrationszeatin, kinetin and 6-benzylamino-purine (BAP) induced a significantincrease in vessel regeneration around the wound. The threecytokinins also induced novel patterns of supplementary regenerationfurther from the wound surface. Kinetin and BAP showed the strongestpromoting effect at 5 and 10 µg ml–1, while zeatinwas most effective at 20 µg ml–1. At a low (0.1%) auxin level zeatin was the most effective cytokinin, whereaskinetin was the most effective one at high (1 %) auxin. An inhibitoryeffect on vessel regeneration was observed at the highest kinetinconcentration tested (50 µg ml–1). The regenerationof vessels induced by cytokinin was very polar. Many more regeneratedvessel members differentiated below the wound than above it,and the regeneration process proceeded acropetally from thebase of the internode to its upper parts. Our results implya basipetal polar increase in cambium responsiveness along thestem axis from internode 5 to 7. The possible significance ofsuch a basipetal increase in cambium sensitivity in wood formationin trees is discussed. Auxin, Coleus blumei, cytokinin, vascular differentiation, vessel regeneration, wound xylem  相似文献   

4.
Auxin-induced changes in the mechanical properties of cell wallwere examined by both positive and negative pressure jump methodsusing hypocotyl segments excised from the 3-day-old seedlingsof cowpea that has been treated with uniconazole, a potent inhibitorof the biosynthesis of gibberellins. In such segments (U-segments)that were deficient in endogenous gibberellin, auxin increasedonly the effective turgor (Pi–Y) and did not change theextensibility () of cell wall. As a result, the extent of theauxin-induced promotion of growth was halved. However, auxinwas able to increase of U-segments that has been pretreatedfor two hours with GA3 prior to the application of IAA. Measurementof intracellular pressure (Pi) with a pressure probe revealedthat auxin did not change Pi in either U-segments or GA3-pretreatedsegments. The results suggest that auxin can decrease the yieldthreshold of the cell wall (Y) independently of gibberellinbut can increase only in the presence of gibberellin. The differencebetween and Y in terms of their requirement for gibberellinto respond to auxin suggests that they are mutually separablemechanical properties that originate from different molecularprocesses that occur in the architecture of yielding cell walls. 3Present address: Ohishi, Enden, Mori-machi, Shuchi-gun, Shizuoka,437-02 Japan  相似文献   

5.
6.
The relationship between DNA synthesis and wound xylem differentiation was investigated in cultured stem segments of Coleus blumei. The addition of 50 micrograms of indoleacetic acid per liter to the culture medium resulted in a 400 to 500% increase in the number of wound vessel members formed in 7 days. However, the time course of wound vessel member formation was similar in segments cultured in the presence and absence of auxin. In either case, no wound vessel members appeared before the 3rd day of culture, while the majority of wound vessel members appeared on the 4th and 5th days of culture. 3H-Thymidine incorporation into DNA was used to measure changes in the DNA synthetic activity of the tissues during the culture period. Comparatively little 3H-thymidine incorporation occurred during the 1st day of culture. Maximum 3H-thymidine incorporation was observed on the 2nd day of culture, 2 days before the peak period of xylem differentiation. The rate of incorporation of 3H-thymidine into DNA decreased with increasing time in culture after the 2nd day. Auxin at 50 micrograms per liter had no effect on the time course of 3H-thymidine incorporation, although somewhat more 3H-thymidine was incorporated into DNA throughout the culture period in the presence of auxin. The magnitude of this effect was small when compared to the effect of auxin on xylem differentiation. The antimetabolite 5-fluorodeoxyuridine was shown to block DNA synthesis in the cultured stem segments. When the tissues were isolated on media containing 10−6m 5-fluorodeoxyuridine, wound vessel member differentiation was inhibited by approximately 80%, in both the presence and absence of auxin. Thymidine at 10−5m completely overcame the 5-fluorodeoxyuridine inhibition of wound vessel member formation. 5-Fluorodeoxyuridine was effective in blocking xylogenesis only when this substance was supplied to the tissues during the early part of the culture period. 5-Fluorodeoxyuridine had no effect on xylem differentiation when it was applied after the 3rd day of culture.  相似文献   

7.
The phytohormone auxin is important in various aspects of organism growth and development. Aux/IAA genes encoding short-lived nuclear proteins are responsive primarily to auxin induction. Despite their physiological importance, systematic analysis of Aux/IAA genes in maize have not yet been reported. In this paper, we presented the isolation and characterization of maize Aux/IAA genes in whole-genome scale. A total of 31 maize Aux/IAA genes (ZmIAA1 to ZmIAA31) were identified. ZmIAA genes are distributed in all the maize chromosomes except chromosome 2. Aux/IAA genes expand in the maize genome partly due to tandem and segmental duplication events. Multiple alignment and motif display results revealed major maize Aux/IAA proteins share all the four conserved domains. Phylogenetic analysis indicated Aux/IAA family can be divided into seven subfamilies. Putative cis-acting regulatory DNA elements involved in auxin response, light signaling transduction and abiotic stress adaption were observed in the promoters of ZmIAA genes. Expression data mining suggested maize Aux/IAA genes have temporal and spatial expression pattern. Collectively, these results will provide molecular insights into the auxin metabolism, transport and signaling research.  相似文献   

8.
The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha.  相似文献   

9.
Auxin Stimulates Cl-Uptake by Oat Coleoptiles   总被引:1,自引:0,他引:1  
The effects of auxin on net ion fluxes near parenchyma of oatcoleoptiles were studied using the non-invasive MIFE systemto measure specific ion fluxes using ion selective microelectrodes.Application of 10 µM1-naphthaleneacetic acid (NAA) for3 h caused doubling of coleoptile segment growth, without changingthe pH of the unbuffered bathing solution from pH 5.4 duringthat time. Short term experiments revealed that auxin led toan immediate three-fold increase of chloride influx to 1200nmol m-2s-1, maintained for at least 1 h. In the first minutesafter auxin application, proton fluxes were small (-25 nmolm-2s-1, an efflux) and tended to decrease, whereas potassiumand calcium fluxes changed little, fluctuating from -100 to0 nmol m-2s-1and from -15 to 0 nmol m-2s-1, respectively. Itis suggested that one target of auxin action in plant cellsis the plasma membrane chloride transport system mediating increasedchloride uptake.Copyright 1998 Annals of Botany Company Auxin, chloride transport, ion flux,Avena sativaL., oat.  相似文献   

10.
Calcium Antagonist TMB-8 Inhibits Cell Wall Formation and Growth in Pea   总被引:3,自引:0,他引:3  
The effects on auxin-stimulated growth and cell wall formationof 8-(N, N-diethylamino)-octyl-3, 4, 5-trimethoxybenzoate.HCI(TMB-8), an intracellular Ca2+ antagonist, were investigatedin abraded stem segments from aetiolated seedlings of Pisumsativum L. cv. Alaska. Incubation of segments at pH 6.0 with200 mmol m–3 TMB-8 resulted in a 50% inhibition of auxin-stimulatedgrowth. Added Ca2+ did not restore normal auxin-stimulated growth,presumably because of its well-known stiffening effect on thecell wall. In segments incubated at a pH (7–2) which preventedelongation, auxin promoted the incorporation of [3H]glucoseinto the cell wall relative to total uptake of label. TMB-8abolished about 60% of the total incorporation of label intocell walls in the presence of auxin, but was not effective inthe absence of auxin. Exogenous CaCl2 reversed the inhibitoryeffect of TMB-8 on relative cell wall incorporation in a parabolicmanner, with a 50% reversal at about 100 mmol m–3 andcomplete reversal at 1.0 mol m–3 Ca2+. Other ions tested(Mg2+, Mn2+, Cu2+, Zn2+) were without substantial effect atconcentrations of 0.5 mol m–3. Both apparent uptake ofCa2+ and consequent reversal of TMB-8 inhibition of cell wallincorporation were blocked by the Ca2+ channel blockers verapamiland La3+. The data provide further evidence that auxin-stimulatedgrowth is dependent upon continued cell wall incorporation,and suggest that a Ca2+ messenger system may be involved inthe promotory actions of auxin on cell wall synthesis and long-termgrowth. Key words: Auxin, calcium, cell wall synthesis  相似文献   

11.
The diageotropica (dgt) mutation has been proposed to affect either auxin perception or responsiveness in tomato plants. It has previously been demonstrated that the expression of one member of the Aux/IAA family of auxin-regulated genes is reduced in dgt plants. Here, we report the cloning of ten new members of the tomato Aux/IAA family by PCR amplification based on conserved protein domains. All of the gene family members except one (LeIAA7) are expressed in etiolated tomato seedlings, although they demonstrate tissue specificity (e.g. increased expression in hypocotyls vs. roots) within the seedling. The wild-type auxin-response characteristics of the expression of these tomato LeIAA genes are similar to those previously described for Aux/IAA family members in Arabidopsis. In dgt seedlings, auxin stimulation of gene expression was reduced in only a subset of LeIAA genes (LeIAA5, 8, 10, and 11), with the greatest reduction associated with those genes with the strongest wild-type response to auxin. The remaining LeIAA genes tested exhibited essentially the same induction levels in response to the hormone in both dgt and wild-type hypocotyls. These results confirm that dgt plants can perceive auxin and suggest that a specific step in early auxin signal transduction is disrupted by the dgt mutation.  相似文献   

12.
Saturable uptake of indol-3yl-acetic Acid by maize roots   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake of 5-[3H]indol-3yl-acetic acid (IAA*) by segments of Zea mays L. roots was measured in the presence of nonradioactive indol-3yl-acetic acid (IAA°) at different concentrations. IAA uptake was found to have a nonsaturable component and a saturable part with (at pH 5.0) an apparent Km of 0.285 micromolar and apparent Vmax 55.0 picomoles per gram fresh mass per minute. These results are consistent with those which might be expected for a saturable carrier capable of regulating IAA levels. High performance liquid chromatography analyses showed that very little metabolism of IAA* took place during 4 minute uptake experiments. Whereas nonsaturable uptake was similar for all 2 millimeter long segments prepared within the 2 to 10 millimeter region, saturable uptake was greatest for the 2 to 4 millimeter region. High levels of uptake by stelar (as compared with cortical) segments are partly attributable to the saturable carrier, and also to a high level of uptake by nonsaturable processes. The carrier may play an essential role in controlling IAA levels in maize roots, especially the accumulation of IAA in the apical region. The increase in saturable uptake toward the root tip may also contribute to the acropetal polarity of auxin transport.  相似文献   

13.
Mode of action of FC was compared with that of auxin in differentexperimental systems and the following results were obtained.
  1. FC, as well as auxin, primarily induced elongation of the epidermisof pea epicotyl segments, but it also promoted elongation ofthe inner tissue, as judged by its action in split stem tests,elongation of hollow-cylinder segments and elongation of unpeeledand peeled segments.
  2. FC decreased the minimum stress relaxationtime (T0) and increasedthe extensibility (mm/gr) of the epidermalcell wall of peaepicotyl segments, as did auxin.
  3. FC failedto induce expansion growth of Jerusalem artichoketuber sliceswhen given alone or in combination with kinetinor gibberellicacid.
  4. FC at concentrations lower than 10–6 M, when givenwithauxin at concentrations lower than 0.03 mg/liter, promotedelongationof Avena coleoptile segments in an additive manner,to achievethe maximum elongation at higher concentrations.
  5. An antiauxin, 2,4,6-trichlorophenoxyacetic acid, inhibitedtheelongation of Avena coleoptile segments due to auxin butnotthat due to FC.
  6. Nojirimycin, an inhibitor of ß-glycosidases,inhibitedelongation of pea internode segments due not onlyto auxin butalso to FC.
  7. At concentrations more than 10–5MFC promoted root elongationof intact lettuce seedlings, whichwas inhibited by exogenousauxin.
From these results it is concluded that FC and auxin have acommon mechanism, which may involve hydrogen ion extrusion,leading to cell wall loosening and thus cell elongation. Thisgrowth is limited to the extent that the cells are capable ofelongating in response to hydrogen ions. Otherwise there isa definite difference in the mode of actions between FC andauxin, including the nature of cellular receptors for thesetwo compounds. (Received August 29, 1974; )  相似文献   

14.
Auxin induced an increase in the rate of ethylene productionby hypocotyl segments of etiolated mungbean seedlings aftera 1 hr lag period. The increase in the production rate was greatestwith segments immediately below the cotyledonary hook. Effectiveconcentrations of indoleacetic acid ranged from 1 µm to0.5 mM. Length of the lag period was the same regardless ofthe interval between segment excision and the addition of auxin.Auxin-induced ethylene production was inhibited by cycloheximidebut not by chloramphenicol. Auxin removal from, or cycloheximideaddition to, segments actively producing ethylene in responseto auxin caused a rapid decrease in the rate of ethylene production.These results suggest that the ethylene producing system inducedby auxin is rapidly turning over and that auxin acts at twosites to increase ethylene production 1This work was supported in part by grant No. 0802 from Ministryof Education, Japan (Received November 30, 1970; )  相似文献   

15.
The uptake and metabolism of tritiated indolebutyric acid (IBA)and indoleacetic acid (IAA) were related to root regenerationon stem bases of apple (Malus cv "Jork") shootlets culturedin vitro. The major part of the auxins taken up from the mediumwas located in the bottom 1 mm of the stem basis, the locationwhere the roots emerge. In this part of the shoot about 4% ofthe accumulated IBA-3H remained in the free acid. Analysis onnormal phase TLC followed by reversed phase HPLC revealed thatabout 1% of the IBA-metabolites co-chromatographed with standardIAA. Incubation of shoots on medium with IAA led also to anIAAint content of about 1% of the amount absorbed. IAA was notconverted into IBA. A medium concentration of 3.2 µM IAAor IBA induced maximum root formation of 9 and 13 roots pershoot, respectively. The IAAint content in the stem base was0.5 µmol per kg FW after 5 days regardless of the auxinsource. Incubation on medium with IBA led to an IBAint concentrationof 3.4 µmol per kg FW. IBA may exert its action partlyvia conversion into IAA. However, the fact that IBA inducedmore roots than IAA suggests that IBA itself is also active,or modulates the activity of IAA. The partition of absorbed auxin over active free auxin acidand individual conjugates was not directly related to root formation.At inductive and non-inductive auxin concentrations no shiftin the ratio of free auxin acids to total absorbed auxin wasobserved during root formation. (Received March 4, 1992; Accepted May 25, 1992)  相似文献   

16.
14C from indol-3-yl-(acetic acid-2-14C) (IAA-14C) was transportedin a weak but definitely polar manner through segments of youngand matured regions of pea roots. Greater quantities of 14C-labelledmaterial moved acropetally than basipetally. Up to 70 per centof radioactivity originally present in donor agar blocks wastaken up by the root segments, but only approximately 2 to 3per cent of this emerged into the receiver agar blocks. Anydifferences in uptake, transport, or binding of auxin were veryslight in the three regions of root studied. The IAA-14C wasmetabolized during passage through the root segments, yieldingtwo principal radioactive products. The identities of thesewere not determined, but they appeared to have auxin activityand may be formed spontaneously, but more slowly, in solutionsof IAA-14C. IAA-14C was transported into receiver blocks morereadily than its radioactive derivatives.  相似文献   

17.
Stem segments of non-tumorous Nicotiana glauca and N. langsdorffiiplants and of their tumor-producing amphidiploid F1 hybrid weretreated with 6-furfurylaminopurine (kinetin) prior to transporttests with applied labeled indoleacetic acid (IAA-2-14C). Kinetin-treatmentsincreased the uptake of IAA in non-tumorous shoots; the IAAuptake by N. langsdorffii segments was increased up to 3-fold.The auxin uptake in stem-segments of the tumor-forming hybrid,however, could not be increased significantly by kinetin. Theeven distribution of IAA-14C in segments of normal and tumorproneNicotiana shoots is stimulated by kinetin. Data are discussedin conjunction with previous results on auxin transport andtumorformation in Nicotiana. (Received August 8, 1972; )  相似文献   

18.
A concentration of 10–5 M tomatine had no effect on leakagefrom, or elongation of, wheat coleoptile segments, but consistentlyreduced IAA-enhanced extension growth by c. 50 per cent. Therewas no evidence of chemical interaction between the alkaloidand the auxin in solution, and IAA action was not affected bypre-treatment for up to 3 h with 10–5 M tomatine. Studieswith [2-14C]IAA revealed that 10–5 M tomatine did notinhibit uptake of auxin into segments. The effect of pre-treatingsegments for up to 3 h with IAA could be virtually nullifiedby 10–5 M tomatine, as could also IAA-induced changesin properties of coleoptile cell walls. Results are discussedin relation to the ability of tomatine to disrupt membrane functionand to current hypotheses implicating membranes in the primaryaction of auxin.  相似文献   

19.
20.
A method was developed for evaluating the empirical alterationof xylem vessel differentiation in the central leaf trace ofPopulus deltoides, a species that exhibits helical phyllotaxis.Effects of experimental treatments for a period of six plastochronswere evaluated by vessel parameter ratios = 2.PT/ (PT+1 + PT–1),where P was either vessel number or mean transverse vessel areameasured at mid-intern ode at Leaf Plastochron Indices of T– 1, T, and T + 1. Excising leaf laminae reduced vesselnumber and mean vessel area in the associated central leaf traceby 50% and 70%, respectively, compared to unexcised laminaecontrols. Replacing excised laminae with a concentration seriesof exogenous indoleacetic acid (IAA) resulted in a 5% increaseper log mol m–3 of IAA in the number of vessels differentiatingin the associated central leaf traces compared to excised controls.Mean vessel areas within these leaf traces were 50% of thoseof intact leaf traces. No significant effects of different concentrationsof exogenously applied IAA on mean vessel area could be demonstrated.A lanolin paste ring of N-1 -naphthylphthalamic acid (NPA),an auxin transport inhibitor, around the petioles of intactleaves reduced the number of differentiating vessels by 7% andmean vessel area by 29% per log mol m–3 of NPA comparedto central leaf traces of leaves ringed with plain lanolin paste.The results suggest that NPA treatments may be used to distinguishexperimentally, at least in part, the cell division from thecell enlargement phases of primary xylogenesis within centralleaf traces of P. deltoides stems. Key words: Auxin transport, Vessel area, Vessel number  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号