首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The beta subunit of DNA polymerase III holoenzyme, the Escherichia coli chromosomal replicase, is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity. The gene encoding beta, dnaN, maps between dnaA and recF, which are involved in initiation of DNA replication at oriC and resumption of DNA replication at disrupted replication forks, respectively. In exponentially growing cells, dnaN and recF are expressed predominantly from the dnaA promoters. However, we have found that stationary phase induction of the dnaN promoters drastically changes the expression pattern of the dnaA operon genes. As a striking consequence, synthesis of the beta subunit and RecF protein increases when cell metabolism is slowing down. Such an induction is dependent on the stationary phase sigma factor, RpoS, although the accumulation of this factor alone is not sufficient to activate the dnaN promoters. These promoters are located in DNA regions without static bending, and the -35 hexamer element is essential for their RpoS-dependent induction. Our results suggest that stationary phase-dependent mechanisms have evolved in order to coordinate expression of dnaN and recF independently of the dnaA regulatory region. These mechanisms might be part of a developmental programme aimed at maintaining DNA integrity under stress conditions.  相似文献   

3.
4.
Coordinate expression of Escherichia coli dnaA and dnaN genes   总被引:4,自引:0,他引:4  
Summary The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lysogenic dnaN59 cells at the nonpermissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene fuction. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA - dnaN + phages remains weak upon simultaneous infection with dnaA + dnaN - phages. Thus the insertion and deletion in the dnaA gene influence in cis the expression of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.  相似文献   

5.
6.
Identification of the dnaA and dnaN gene products of Escherichia coli   总被引:1,自引:0,他引:1  
Summary A specialized transducing lambda phage carrying the dnaN and dnaA genes of Escherichia coli specifies two proteins of about 41 and 48 kilodaltons (kd). The temperature-sensitive mutations, dnaN59 and dnaA167, were found to result in altered isoelectric points of the 41 and 48 kd proteins, respectively. Thus the dnaN gene product was identified as a weakly acidic 41 kd protein, and the dnaA gene product as a weakly basic 48 kd protein. The synthesis of the dnaN gene product is greatly reduced by insertion of a transposon Tn3 in the dnaA gene and by deletion in the gene at the distal end to the dnaN gene. Temperature-sensitive dnaA mutations, on the other hand, do not affect the synthesis of the dnaN gene product. These results indicate that the synthesis of the dnaN gene product is dependent on the structural integrity of the dnaA gene.Abbreviations kd kilodaltons - SDS sodium dodecyl sulfate  相似文献   

7.
The product of the rhaR gene, which regulates the level of mRNA produced from the four L-rhamnose-inducible promoters of the rhamnose operon, has been hypersynthesized and purified by a two-column procedure. The purified protein is a 33 kDa DNA-binding protein that binds to an inverted repeat structure located within the psr promoter, the promoter for the rhaS and rhaR genes. The equilibrium binding constants and kinetic constants have been determined under a variety of solution conditions. The protein binds with high affinity and its binding is sensitive to salt concentration and the presence of L-rhamnose. The nucleotides and phosphate residues contacted by RhaR were identified by chemical interference assays. All of the contacts are made to one face of the DNA and the symmetrical pattern matches the inverted repeat sequence proposed for the binding site. An unusual property of the binding site is that the two half-sites of the inverted repeat are separated from one another by 17 base-pairs of uncontacted DNA. Significant binding is retained if the 17 base-pairs are extended by insertions of integral turns of DNA, but not by half-integral turns. The complex of RhaR-DNA appears to be sharply bent, approximately 160 degrees.  相似文献   

8.
The level of translation of recF-lacZ fusions is reduced 20-fold by nucleotides 49 to 146 of recF. In this region of recF, we found a previously described ribosome-interactive sequence called epsilon and a hexapyrimidine tract located just upstream of the epsilon sequence. Mutational studies indicate that the hexapyrimidine sequence is involved in at least some of the reduced translation. When the hexapyrimidine sequence is mutant, mutating epsilon increases the level of translation maximally. We ruled out the possibility that ribosome frameshifting explains most of the effect of these two sequences on expression and suspect that multiple mechanisms may be responsible. In a separate report, we show that mutations in the hexapyrimidine tract and epsilon increase expression of the full-sized recF gene.  相似文献   

9.
Organization and transcription of the dnaA and dnaN genes of Escherichia coli   总被引:13,自引:0,他引:13  
Y Sakakibara  H Tsukano  T Sako 《Gene》1981,13(1):47-55
  相似文献   

10.
11.
Genetic and physical mapping of recF in Escherichia coli K-12   总被引:17,自引:0,他引:17  
Summary Two factor transductional crosses place recF at approximately 82 min on the E. coli chromosome; recF is highly cotransducible with dnaA and gyrB (cou). Transductional analysis with a series of tna specialized transducing phages carrying chromosomal DNA from the tnaA region place recF between dnaA and gyrB. This analysis also indicates that a gene lying in the same region and producing an easily detectable protein (estimated MW of 45 kD) is dnaN and not recF.  相似文献   

12.
Regulation of the L-arabinose transport operons in Escherichia coli   总被引:9,自引:0,他引:9  
l-Arabinose is transported into Escherichia coli via two independent transport systems, a system possessing relatively low affinity for arabinose, the araE system, and a system of higher affinity for arabinose, the araFG system. In the work reported here we demonstrate that insertion of the Mu-lac bacteriophage isolated by Casadaban &; Cohen (1979) permits a reliable measurement of the expression of these two operons. Using appropriate Mu-lac insertion strains we found that both of the arabinose transport operons can be induced approximately 150-fold by the presence of arabinose, and that induction of both transport operons requires CRP (cyclic AMP receptor protein), but that their catabolite sensitivities differ from one another. In addition, we show that the araC+ allele is dominant to the Cc allele in the control of the transport operons, just as is found in the araBAD operon.  相似文献   

13.
Factors affecting expression of the recF gene of Escherichia coli K-12   总被引:5,自引:0,他引:5  
S J Sandler  A J Clark 《Gene》1990,86(1):35-43
  相似文献   

14.
A Nakata  M Amemura    K Makino 《Journal of bacteriology》1989,171(6):3553-3556
Between 59 and 60 min on the Escherichia coli genetic map, there is a highly conserved sequence of 29 base pairs, containing an inverted repeat of seven base pairs that appears 14 times, 32 or 33 base pairs apart, downstream of the iap gene coding region. About 24 kilobase pairs downstream of the 14 repeats, a similar 29-base-pair sequence with a spacing of 32 base pairs appears seven times. Nucleotide sequences hybridizing with the 29-base-pair fragment were also detected in Shigella dysenteriae and Salmonella typhimurium but not in Klebsiella pneumoniae or Pseudomonas aeruginosa.  相似文献   

15.
The recF gene of Escherichia coli is known to encode an Mr-40,000 protein that is involved in DNA recombinationa nd postreplication DNA repair. To characterize the role of the recF gene product in these processes, the recF gene was cloned downstream of a tac promoter to facilitate overproduction of the recF gene product. The RecF protein was overproduced and purified to apparent homogeneity. N-terminal protein sequence analysis demonstrated that the purified protein had the sequence that was predicted from the DNA sequence of the recF gene, except that the predicted N-terminal Met was not present. The RecF protein bound to single-stranded oligonucleotides in filter binding and gel filtration assays. Maximal binding required 2 to 3 min of incubation at 37 degrees C; the binding reaction had a pH optimum of 7.0, did not require divalent cations, and was inhibited by NaCl concentrations of greater than 250 mM. The Kd of RecF protein binding to a 59-base single-stranded oligonucleotide was on the order of 1.3 X 10(-7) M, and the reaction did not show cooperativity. Experiments measuring the binding to various DNA substrates and competition binding experiments with different DNA molecules demonstrated that RecF protein binds preferentially to single-stranded, linear DNA molecules.  相似文献   

16.
17.
Suppressors of recF (srfA) were found by selection for resistance to mitomycin C and UV irradiation in a recB21 recC22 sbcB15 recF143 strain. srfA mutations map in recA and are dominant to srfA+. They suppress both the DNA repair and the recombination deficiencies due to recF mutations. Therefore, RecA protein which is altered by the srfA mutation can allow genetic recombination to proceed in the absence of recB, recC, and recF functions. recF is also required for induction of the SOS response after UV damage. We propose that recF+ normally functions to allow the expression of two recA activities, one that is required for the RecF pathway of recombination and another that is required for SOS induction. The two RecA activities are different and are separable by mutation since srfA mutations permit recombination to proceed but have not caused a dramatic increase in SOS induction in recF mutants. According to this hypothesis, one role for recF in DNA repair and recombination is to modulate RecA activities to allow RecA to participate in these recF-dependent processes.  相似文献   

18.
The recF and priA genes have roles in DNA repair and homologous recombination. Mutations in these genes also cause decreases in cell viability and alterations in UV-inducible sulAp–lacZ (SOS) expression. To find out if the two genes are in the same or different pathways for viability and SOS expression, the phenotypes of the double mutant strains were studied. The recF priA double mutant showed a lower viability and SOS expression level than either of the single mutants. In the case of cell viability, recF missense mutations decreased viability of a priA2 :: kan strain two to fivefold whereas recF null priA2 :: kan double mutants were not viable at all. dnaC809 , a mutation that suppresses the UV-sensitive (UVS) and Rec phenotypes of priA2 :: kan , restored cell viability, but not UV-inducible SOS expression, to a priA recF strain. Since recF is epistatic with recO and recR ( recOR ) for UV resistance, recOR mutations were also tested with priA2 :: kan . No overlap was found between recOR and priA for viability and SOS expression. It is concluded that priA and recF have two different overlapping functions in viability and SOS expression that are distinguishable by the effects of dnaC809 . The role of recF in a priA2 :: kan strain in cell viability is a new function for recF and unlike recF  's other roles in DNA repair and recombination, is independent of recOR . A new role for priA in UV-inducible SOS expression in a recF mutant is also defined.  相似文献   

19.
20.
Summary When Escherichia coli K12() lysogens are infected with heteroimmune phage, which are unable to replicate, general recombination between phage and prophage depends on the bacterial recF gene. It has been shown that in E. coli K12 postconjugational recombination, the RecF pathway only works with full efficiency if exonuclease I is absent (Clark 1973). However, results presented in this paper indicate that under conditions in which replication is blocked, the recombination pathway dependant on the recF gene is fully active in producing viral recombinants even, if the phage is Red+, in the presence of exonuclease I. In contrast, removal of exonuclease and protein requires elimination of exonuclease I for an efficient RecF pathway. It is concluded that the Red system cooperates with the RecF pathway and that this cooperation involves overcoming the inhibitory effects of exonuclease I. In the absence of exonuclease, protein stimulates recF-dependent recombination but does not suffice to prevent the negative effect of exonuclease I. In the presence of protein, full efficiency of the RecF pathway can be obtained either via cooperation with exonuclease I or, if the viral exonuclease is defective, via inactivation of exonuclease I. Since activity of exonuclease appears necessary to overcome the inhibitory effects of exonuclease I, it is proposed here that exonuclease diverts material from the RecF pathway in a shunt reaction which allows completion of recF-initiated recombinational intermediates via a mechanism insensitive to exonuclease I.When replication is allowed, the Rec system produces viral recombinants mainly via a recF-independent mechanism. However, a major contribution of the RecF pathway to recombination is observed after removal of the Red system and exonuclease I.Obra social de la Caja de Ahorros de Valencia (Director: S. Grisolía)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号