首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The papillomavirus E1 and E2 proteins are both necessary and sufficient in vivo for efficient origin-dependent viral DNA replication. The ability of E1 and E2 to complex with each other appears to be essential for efficient viral DNA replication. In this study, we used the yeast two-hybrid system and in vitro binding assays to map the domains of the human papillomavirus type 16 (HPV16) E1 and E2 proteins required for complex formation. The amino-terminal 190-amino-acid domain of HPV16 E2 was both required and sufficient for E1 binding. The carboxyl-terminal 229 amino acids of E 1 were essential for binding E2, and the amino-terminal 143 amino acids of HPV16 E1 were dispensable. Although the ability of the E1 minimal domain (amino acids [aa] 421 to 649) to interact with E2 was strong at 4 degrees C, it was significantly reduced at temperatures above 25 degrees C. A larger domain of E1 from aa 144 to 649 bound E2 efficiently at any temperature, suggesting that aa 144 to 420 of E1 may play a role in the HPV16 E1-E2 interaction at physiological temperatures.  相似文献   

2.
E2F1 promotes DNA damage-induced apoptosis and the post-translational modifications of E2F1 play an important role in the regulation of E2F1-mediated cell death. Here, we found that Set9 and LSD1 regulate E2F1-mediated apoptosis upon DNA damage. Set9 methylates E2F1 at lysine 185, a conserved residue in the DNA-binding domain of E2F family proteins. The methylation of E2F1 by Set9 leads to the stabilization of E2F1 and up-regulation of its proapoptotic target genes p73 and Bim, and thereby induces E2F1-mediated apoptosis in response to genotoxic agents. We also found that LSD1 demethylates E2F1 at lysine 185 and reduces E2F1-mediated cell death. The identification of the methylation/demethylation of E2F1 by Set9/LSD1 suggests that E2F1 is dynamically regulated by epigenetic enzymes in response to DNA damage.  相似文献   

3.
E2F1 promotes DNA damage-induced apoptosis and the post-translational modifications of E2F1 play an important role in the regulation of E2F1-mediated cell death. Here, we found that Set9 and LSD1 regulate E2F1-mediated apoptosis upon DNA damage. Set9 methylates E2F1 at lysine 185, a conserved residue in the DNA-binding domain of E2F family proteins. The methylation of E2F1 by Set9 leads to the stabilization of E2F1 and up-regulation of its proapoptotic target genes p73 and Bim, and thereby induces E2F1-mediated apoptosis in response to genotoxic agents. We also found that LSD1 demethylates E2F1 at lysine 185 and reduces E2F1-mediated cell death. The identification of the methylation/demethylation of E2F1 by Set9/LSD1 suggests that E2F1 is dynamically regulated by epigenetic enzymes in response to DNA damage.  相似文献   

4.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

5.
6.
The long control region of bovine papillomavirus type 1 (BPV-1) can function in an orientation- and position-independent manner as an E2-dependent enhancer. Dissection of the long control region has revealed two E2-responsive elements, E2RE1 and E2RE2, which map, respectively, between nucleotides 7611 and 7806 and between nucleotides 7200 and 7386 of the BPV-1 genome. In this study, we have carried out a detailed analysis of E2RE1, which has previously been shown to be involved in the regulation of the BPV-1 promoters P89 and P7940. One characteristic of E2RE1 is the presence of a pair of ACCN6GGT motifs (E2 binding sites) at each end of the element. To determine the contribution of these sites, as well as other sequences within E2RE1, to enhancer function, specific mutations and deletions were generated by oligonucleotide reconstruction. The functional analysis of these mutations confirmed that a pair of E2 binding sites was essential for E2-dependent enhancer activity but also indicated that cooperativity between the motifs at each end of E2RE1 creates a highly responsive element. Isolated ACCN6GGT motif pairs could also act as E2-dependent enhancers but at a significantly reduced level in comparison to the intact element. The sequences between the E2 binding sites in E2RE1 were not required for enhancer function and could actually block the enhancer activity of an isolated pair of E2 binding sites when positioned between the binding sites and the enhancer-deleted simian virus 40 early promoter.  相似文献   

7.
8.
9.
Rubella virus (RV) virions contain two glycosylated membrane proteins, E1 and E2, that exist as a heterodimer and form the viral spike complexes on the virion surface. Formation of an E1-E2 heterodimer is required for transport of E1 out of the endoplasmic reticulum lumen to the Golgi apparatus and plasma membrane. To investigate the nature of the E1-E2 interaction, we have introduced mutations in the internal hydrophobic region (residues 81 to 109) of E1. Substitution of serine at Cys82 (mutant C82S) or deletion of this hydrophobic domain (mutant dt) of E1 resulted in a disruption of the E1 conformation that ultimately affected E1-E2 heterodimer formation and cell surface expression of both E1 and E2. Substitution of either aspartic acid at Gly93 (G93D) or glycine at Pro104 (P104G) was found to impair neither E1-E2 heterodimer formation nor the transport of E1 and E2 to the cell surface. Fusion of RV-infected cells is induced by a brief treatment at a pH below 6.0. To test whether this internal hydrophobic domain is involved in the membrane fusion activity of RV, transformed BHK cell lines expressing either wild-type or mutant spike proteins were exposed to an acidic pH and polykaryon formation was measured. No fusion activity was observed in the C82S, dt, and G93D mutants; however, the wild type and the P104G mutant exhibited fusogenic activities, with greater than 60% and 20 to 40% of the cells being fused, respectively, at pH 4.8. These results suggest that it is likely that the region of E1 between amino acids 81 and 109 is involved in the membrane fusion activity of RV and that it may be important for the interaction of that protein with E2 to form the E1-E2 heterodimer.  相似文献   

10.
11.
12.
13.
Magnesium stimulates phosphorylation of the calcium pump protein of the sarcoplasmic reticulum by inorganic phosphate, but the effect is reversed by high [Mg2+]. This reversal is readily explained in terms of the generally accepted existence of two conformational states of the enzyme, E1 and E2. E2 is the form of the enzyme that can be phosphorylated by Pi, and it has one binding site for Mg2+. E1 is the form of the enzyme that has two high-affinity Ca2+ binding sites, and it is phosphorylated by ATP when Ca2+ is bound. Mg2+ can bind weakly to the two Ca2+ sites and to a third site known to be present on E1; this stabilizes E1 at the expense of E2 when [Mg2+] is large. Stabilization of E1 at pH 6.2 and 25 degrees C was found to be a highly cooperative function of [Mg2+] and was not prevented by increasing [Pi]. The latter result requires the existence of a binding site for Pi on E1, with an affinity for Pi comparable to that of E2. Cooperativity with respect to [Mg2+] requires that E2 is the stable state of the enzyme in the absence of ligands, with an equilibrium constant [E2]/[E1] on the order of 10(3) or higher at pH 6.2 and 25 degrees C.  相似文献   

14.
The E2 glycoprotein of Sindbis virus is synthesized as a precursor, PE2, which is cleaved by furin or a furin-like host cell protease at a late stage of maturation. The four-residue PE2 cleavage signal conforms to the basic amino acid-X-basic-basic motif which is present in many other viral and cellular glycoproteins which are processed by the cellular enzyme(s). In this report, we present evidence that the amino acid which immediately follows the signal, the N-terminal residue of E2, can influence protease recognition, binding, and/or cleavage of PE2. Constructs encoding nine different amino acids at E2 position 1 (E2 1) were produced by site-directed mutagenesis of the full-length cDNA clone of our laboratory strain of Sindbis virus AR339 (pTRSB). Viruses derived from clones encoding Arg (TRSB), Asp, Ser, Phe, His, and Asn in a nonglycosylated form at E2 1 contained predominantly E2. Viruses encoding Ile, Leu, or Val at E2 1 contained the uncleaved form of PE2. The specific infectivity of TRSB (E2 Arg-1) for baby hamster kidney (BHK-21) cells was from 5- to greater than 100-fold higher than those of isogenic constructs with other residues at E2 1, suggesting that E2 Arg-1 represents a BHK-21 cell adaptive mutation in our laboratory strain. In newborn CD-1 mice, TRSB was more virulent than the PE2-containing viruses but less virulent than other PE2-cleaving viruses with alternative amino acids at E2 1. These results indicate that in TRSB, E2 Arg-1 increased the efficiency of virus-cell interactions in cultured BHK-21 cells but simultaneously decreased the ability of virus to mediate in vivo virus-cell interactions critical for the induction of disease. This suggests that the N terminus of E2 may participate in or be associated with virion domains which mediate these viral functions.  相似文献   

15.
16.
Fe-S centers in lactyl-CoA dehydratase   总被引:2,自引:0,他引:2  
Lactyl-CoA dehydratase consists of two enzymes, E1 and E2, and requires catalytic quantities of ATP for activity [Kuchta, R. D., & Abeles, R. H. (1985) J. Biol. Chem. 260, 13181-13189]. In contrast to E1, which contains no Fe, E2 contains 8.20 +/- 0.04 mol of Fe/mol of E2, one of which can be removed by 1,10-phenanthroline. E2 also contains 7.33 +/- 0.68 mol of inorganic sulfur/mol of E2, indicating that at least seven of the Fe atoms are present as Fe-S clusters. E1 and E2 contain less than 0.14 mol of Cu, Co, Zn, Mn, and Ni/mol of E1 or E2. Both reduced and oxidized E1 are EPR silent over a 10,000-G scan range at 4 K, while two signals in E2 are observable at 4 K. Identical spectra were obtained with E2 containing either seven or eight Fe atoms, and both signals were only observable at T less than 30 K. Signal 1 has axial symmetry with g = 2.0232 and g = 2.0006. Signal 2 is orthorhombic with g1 = 1.982, g2 = 1.995, and g3 = 2.019. Computer simulation of these spectra with a S = 1/2 spin Hamiltonian was used to extract the g matrices. The intensity of both signals decreases when E2 is reduced with Na2S2O4. We propose that signal 1 is due to an unusual [4Fe-4S] cluster and signal 2 to a [3Fe-3/4S] cluster. Addition of either acrylyl-CoA or lactyl-CoA dramatically alters signal 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Papillomaviral infection causes both benign and malignant lesions and is a necessary cause of cervical carcinoma. Replication of this virus requires the replication initiation proteins E1 and E2, which bind cooperatively at the origin of replication (ori) as an (E1)2-(E2)2-DNA complex. This is a precursor to larger E1 complexes that distort and unwind the ori. We present the crystal structure of the E1 DNA binding domain refined to 1.9 A resolution. Residues critical for DNA binding are located on an extended loop and an alpha helix. We identify the E1 dimerization surface by selective mutations at an E1/E1 interface observed in the crystal and propose a model for the (E1)2-DNA complex. These and other observations suggest how the E1 DNA binding domain orchestrates assembly of the hexameric helicase on the ori.  相似文献   

19.
Although it is well established that ubiquitin-like modifications are tightly regulated, it has been unclear how their E1 activities are controlled. In this study, we found that the SAE2 subunit of the small ubiquitin-like modifier (SUMO) E1 is autoSUMOylated at residue Lys-236, and SUMOylation was catalyzed by Ubc9 at several additional Lys residues surrounding the catalytic Cys-173 of SAE2. AutoSUMOylation of SAE2 did not affect SUMO adenylation or formation of E1·SUMO thioester, but did significantly inhibit the transfer of SUMO from E1 to E2 and overall SUMO conjugations to target proteins due to the altered interaction between E1 and E2. Upon heat shock, SUMOylation of SAE2 was reduced, which corresponded with an increase in global SUMOylation, suggesting that SUMOylation of the Cys domain of SAE2 is a mechanism for "storing" a pool of E1 that can be quickly activated in response to environmental changes. This study is the first to show how E1 activity is controlled by post-translational modifications, and similar regulation likely exists across the homologous E1s of ubiquitin-like modifications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号