首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Golgi phosphoprotein, GPP130, a cis Golgi protein, is representative of proteins cycling between the Golgi apparatus and endosomes in a pH-sensitive manner. The present qualitative data are insufficient to distinguish the relative contributions of Golgi and endosomal processes in regulating the cycling of such proteins. We have taken a quantitative approach to analyze GPP130 distribution in response to pH perturbation. We have used Shiga-like toxin B fragment, a protein that traffics from the cell surface and Golgi apparatus by the late endosomal bypass pathway, as a probe to highlight one aspect of GPP130 cycling and similarly the trafficking of tsO45-green fluorescent protein (GFP) between the Golgi apparatus and the plasma membrane to treat that aspect of GPP130 cycling in isolation. Overall, we conclude from quantitative analysis and simulations that treatment of HeLa cells with the pH perturbant, monensin, affects GPP130 cycling at several stages with effects on (i) intra-Golgi cycling, (ii) trans Golgi to endosome transport and (iii) endosome to Golgi transport. Our analysis indicates that the effect is greatest at the trans Golgi, the most acidic portion of the Golgi apparatus. In sum, multiple, regulated steps affect the trafficking of GPP130.  相似文献   

2.
The preprophase band predicts the future cell division site. However, the mechanism of how a transient preprophase band fulfils this function is unknown. We have investigated the possibility that Golgi secretion might be involved in marking the preprophase band site. Observations on living BY-2 cells labeled for microtubules and Golgi stacks indicated an increased Golgi stack frequency at the preprophase band site. However, inhibition of Golgi secretion by brefeldin A during preprophase band formation did not prevent accurate phragmoplast fusion, and subsequent cell plate formation, at the preprophase band site. The results show that Golgi secretion does not mark the preprophase band site and thus does not play an active role in determination of the cell division site.  相似文献   

3.
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.  相似文献   

4.
张敏  谭宁  侯连生 《动物学报》2007,53(2):278-284
利用电镜酶细胞化学方法,观察盘基网柄菌细胞分化和凋亡过程中酸性磷酸酶的变化。在细胞丘阶段,酶反应颗粒出现在线粒体内自噬空泡内,随着内自噬空泡的逐渐增大,线粒体内的酶反应颗粒逐渐增多,线粒体内嵴结构不断破坏,直至遍布整个空泡化的线粒体内;当细胞发育至前孢子细胞时,由于嵴结构被完全破坏,酶反应颗粒主要集中在前孢子细胞空泡的单层膜上,空泡化的线粒体内酶反应颗粒逐渐消失。在凋亡的柄细胞中,自噬泡内酶反应强烈,凋亡中期的前柄细胞的细胞核中出现酶反应颗粒,均匀分布在细胞核中,直至细胞核与自噬泡融合。在孢子细胞外被与质膜间也观察到非溶酶体酸性磷酸酶。所得结果证实:线粒体内自噬小泡具有消化功能;自噬泡内酶活性与细胞器消亡有关;细胞核中的酸性磷酸酶可能作为一种非溶酶体酸性磷酸酶参与细胞核中核蛋白的脱磷酸化过程,与发育相关基因表达有关  相似文献   

5.
We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC) mu involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKC mu-green fluorescent protein fusion proteins costained with the Golgi compartment-specific markers p24 and p230. Deletions of either the NH(2)-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKC mu completely abrogated Golgi localization of PKC mu. As an NH(2)-terminal PKC mu fragment was colocalized with p24, this region of PKC mu is essential and sufficient to mediate association with Golgi membranes. Fluorescence recovery after photobleaching studies confirmed the constitutive, rapid recruitment of cytosolic PKC mu to, and stable association with, the Golgi compartment independent of activation loop phosphorylation. Kinase activity is not required for Golgi complex targeting, as evident from microscopical and cell fractionation studies with kinase-dead PKC mu found to be exclusively located at intracellular membranes. We propose a sequential activation process of PKC mu, in which Golgi compartment recruitment precedes and is essential for activation loop phosphorylation (serines 738/742) by a transacting kinase, followed by auto- and transphosphorylation of NH(2)-terminal serine(s) in the regulatory domain. PKC mu activation loop phosphorylation is indispensable for substrate phosphorylation and thus PKC mu function at the Golgi compartment.  相似文献   

6.
We have fused the signal anchor sequences of a rat sialyl transferase and a human galactosyl transferase along with the Arabidopsis homologue of the yeast HDEL receptor (AtERD2) to the jellyfish green fluorescent protein (GFP) and transiently expressed the chimeric genes in tobacco leaves. All constructs targeted the Golgi apparatus and co-expression with DsRed fusions along with immunolabelling of stably transformed BY2 cells indicated that the fusion proteins located all Golgi stacks. Exposure of tissue to brefeldin A (BFA) resulted in the reversible redistribution of ST-GFP into the endoplasmic reticulum. This effect occurred in the presence of a protein synthesis inhibitor and also in the absence of microtubules or actin filaments. Likewise, reformation of Golgi stacks on removal of BFA was not dependent on either protein synthesis or the cytoskeleton. These data suggest that ER to Golgi transport in the cell types observed does not require cytoskeletal-based mechanochemical motor systems. However, expression of an inhibitory mutant of Arabidopsis Rab 1b (AtRab1b(N121I) significantly slowed down the recovery of Golgi fluorescence in BFA treated cells indicating a role for Rab1 in regulating ER to Golgi anterograde transport.  相似文献   

7.
Dictyostelium cells are professional phagocytes that are optimally suited for the imaging of phagosome processing from particle uptake to exocytosis. In order to design fluorescent probes for monitoring membrane trafficking in the endocytic pathway, we have dissected a membrane protein, golvesin, and have linked fragments of its sequence to GFP. Endogenous golvesin is partitioned between the ER, the Golgi apparatus, endosomes, and the contractile vacuole complex. We have localized signals that are required for exit from the Golgi to post-Golgi compartments to the C-terminal region of the golvesin sequence. One GFP-tagged fragment turned out to be a highly specific Golgi marker and was used to demonstrate the interaction of Golgi tubules with phagosomes. Signals essential for the retrieval of golvesin at the end of phagosome processing were localized to the N-terminal region. A truncated golvesin construct escaping retrieval was employed in recording the delivery of a phagosomal protein to the plasma membrane. Applying this construct to a phagosome filled with multiple particles, we observed that the phagosome is segmented during exocytosis, meaning that sequential release of particles alternates with membrane fusion.  相似文献   

8.
The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. Green fluorescent protein (GFP)-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild-type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa.  相似文献   

9.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

10.
ABSTRACT. The response to osmotic stress in axenically cultured Dictyostelium discoideum was examined. Hypoosmotic buffers elicited two changes in the large (-50 mM) cytosolic pool of amino acids: a) the total size of the pool diminished, while b) about half of the initial pool was excreted. Hyperosmotic stress had the opposite effect. Among the predominant amino acids in the pool were glycine, alanine and proline. Putrescine, the major diamine, was neither excreted nor modulated. Recently ingested radioactive amino acids were excreded in preference to those in the cytoplasm, suggesting that the endocytic pathway might be involved in water excretion. Furthermore, hypoosmotic stresss strimulated the selective exretion of small, membrane-impermeable fluorescent dyes which had been ingested into endocytic vacuoles. Caffeine inhibited the excretion of the fluorophores but not the amino acids. We conclude that the response of Dictyostelium to osmotic stress is complex and includes both modulation of the cytoplasmic amino acid pool and the excretion of amino acids and other small solutes from the endocytic pathway.  相似文献   

11.
We visualized a fluorescent-protein (FP) fusion to Rab6, a Golgi-associated GTPase, in conjunction with fluorescent secretory pathway markers. FP-Rab6 defined highly dynamic transport carriers (TCs) translocating from the Golgi to the cell periphery. FP-Rab6 TCs specifically accumulated a retrograde cargo, the wild-type Shiga toxin B-fragment (STB), during STB transport from the Golgi to the endoplasmic reticulum (ER). FP-Rab6 TCs associated intimately with the ER, and STB entered the ER via specialized peripheral regions that accumulated FP-Rab6. Microinjection of antibodies that block coatomer protein I (COPI) function inhibited trafficking of a KDEL-receptor FP-fusion, but not FP-Rab6. Additionally, markers of COPI-dependent recycling were excluded from FP-Rab6/STB TCs. Overexpression of Rab6:GDP (T27N mutant) using T7 vaccinia inhibited toxicity of Shiga holotoxin, but did not alter STB transport to the Golgi or Golgi morphology. Taken together, our results indicate Rab6 regulates a novel Golgi to ER transport pathway.  相似文献   

12.
Annexin A6 (AnxA6) belongs to a family of Ca(2+)-dependent membrane-binding proteins and is involved in the regulation of endocytic and exocytic pathways. We previously demonstrated that AnxA6 regulates receptor-mediated endocytosis and lysosomal targeting of low-density lipoproteins and translocates to cholesterol-enriched late endosomes (LE). As cholesterol modulates the membrane binding and the cellular location of AnxA6, but also affects the intracellular distribution of caveolin, we investigated the localization and trafficking of caveolin in AnxA6-expressing cells. Here, we show that cells expressing high levels of AnxA6 are characterized by an accumulation of caveolin-1 (cav-1) in the Golgi complex. This is associated with a sequestration of cholesterol in the LE and lower levels of cholesterol in the Golgi and the plasma membrane, both likely contributing to retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. Further strengthening these findings, knock down of AnxA6 and the ectopic expression of the Niemann-Pick C1 protein in AnxA6-overexpressing cells restore the cellular distribution of cav-1 and cholesterol, respectively. In summary, this study demonstrates that elevated expression levels of AnxA6 perturb the intracellular distribution of cholesterol, which indirectly inhibits the exit of caveolin from the Golgi complex.  相似文献   

13.
We here report the first comparative proteomics of purified yeast post-Golgi vesicles (PGVs). Vesicle samples isolated from PGV-accumulating sec6-4 mutants were treated with isobaric tags (iTRAQ) for subsequent quantitative tandem mass spectrometric analysis of protein content. After background subtraction, a total of 66 vesicle-associated proteins were identified, including known or assumed vesicle residents as well as a fraction not previously known to be PGV associated. Vesicles isolated from cells lacking the polarity protein Sro7p contained essentially the same catalogue of proteins but showed a reduced content of a subset of cargo proteins, in agreement with a previously shown selective role for Sro7p in cargo sorting.  相似文献   

14.
15.
The cholesterol-containing lactose derived neoglycolipids -Lactosylcholesterol, Cholesteryl--lactosylpropane-1,3-diol, 3-Cholesteryl-1--lactosylglycerol, 2-Cholesteryl-1--lactosylglycerol, 2,3-Dicholesteryl-1--lactosylglycerol, 1-Deoxy-1-cholesterylethanolaminolactitol, 1-Deoxy-1-cholesteryl (N-acetyl)-ethanolaminolactitol, 1-Deoxy-1-cholesterylphosphoethanolaminolactitol, and 1-Deoxy-1-cholesterylphospho (N-acetyl)-ethanolaminolactitol were synthesized and used as acceptors for sialytransferases from rat liver Golgi vesicles. Relative activities with the neoglycolipids as acceptors varied from 28 to 163% compared to those obtained with the authentic acceptor lactosylceramide. Product identification by thin layer chromatography and fast atom bombardment mass spectrometry showed that the neoglycolipids yielded mono- and disialylated products. The results of competition experiments suggested that lactosylceramide and the neoglycolipids were sialylated by the same enzymes.  相似文献   

16.
Whole cells of E. coli expressing a chimeric cadmium-binding peptide fused to green fluorescent protein (CdBP-GFP) were prepared and applied for the determination of cadmium. Construction of the structural gene was performed by inserting two synthetic oligonucleotides coding for four repeats of a Cd-binding peptide (His-Ser-Gln-Lys-Val-Phe) into the 5-end of the GFPuv gene. Similarly, a hexahistidine-green fluorescent protein (his6GFPuv) was prepared and used as a reference in the determinations of heavy metals. The lowest concentrations of Cd, which activated the fluorescence, were 0.5 M, 50 M, and 0.5 mM for cells carrying CdBP4GFP, his6GFP and native GFP, respectively.  相似文献   

17.
Matsumura Y  Sakai H  Sasaki M  Ban N  Inagaki N 《FEBS letters》2007,581(17):3139-3144
ABCA3 is proposed to function as a lung surfactant lipid transporter. Here we report ABCA3-dependent lipid uptake into intracellular vesicles in lung adenocarcinoma A549 cells. A549 cells stably expressing GFP-tagged wild-type ABCA3 (A549/ABCA3(WT)) had larger LAMP3-positive vesicles than their parental cells as well as A549 cells expressing a Walker A motif mutant (A549/ABCA3(N568D)). The choline-phospholipids level in A549/ABCA3(WT) was increased 1.25-fold compared to that in A549 and A549/ABCA3(N568D) cells, while the cholesterol levels were similar. Sucrose gradient fractionation analysis in A549/ABCA3(WT) cells revealed that choline-phospholipids were enriched in low-density and nile red-positive vesicles. Electronmicroscopic analysis showed multilamellar vesicles in A549/ABCA3(WT) cells. These results indicate that ABCA3 mediates ATP-dependent choline-phospholipids uptake into intracellular vesicles.  相似文献   

18.
A role for heterotrimeric G proteins in the regulation of Golgi function and formation of secretory granules is generally accepted. We set out to study the effect of activation of heterotrimeric G proteins by aluminum fluoride on secretory granule formation in AtT-20 corticotropic tumor cells and in melanotrophs from the rat pituitary. In AtT-20 cells, treatment with aluminum fluoride or fluoride alone for 60 min induced complete dispersal of Golgi, ER-Golgi intermediate compartment and Golgi matrix markers, while betaCOP immunoreactiviy retained a juxtanuclear position and TGN38 was unaffected. Electron microscopy showed compression of Golgi cisternae followed by conversion of the Golgi stacks into clusters of tubular and vesicular elements. In the melanotroph of the rat pituitary a similar compression of Golgi cisternae was observed, followed by a progressive loss of cisternae from the stacks. As shown in other cells, brefeldin A induced redistribution of the Golgi matrix protein GM130 to punctate structures in the cytoplasm in AtT-20 cells, while mannosidase II immunoreactivity was completely dispersed. Fluoride induced a complete dispersal of mannosidase II and GM130 immunoreactivity. The effect of fluoride was fully reversible with reestablishment of normal mannosidase II and GM130 immunoreactivity within 2 h. After 1 h of recovery, showing varying stages of reassembly, the patterns of mannosidase II and GM130 immunoreactivity were identical in individual cells, indicating that Golgi matrix and cisternae reassemble with similar kinetics during recovery from fluoride treatment. Instead of a specific aluminum fluoride effect on secretory granule formation in the trans-Golgi network, we thus observe a unique form of Golgi dispersal induced by fluoride alone, possibly via its action as a phosphatase inhibitor.  相似文献   

19.
Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J.Cell Biol.142:923-936).Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.  相似文献   

20.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号