首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cells of the pathogenic yeast Candida albicans accumulate as unbudded singlets at stationary phase in defined medium at 25 °C. When released into fresh medium at 37 °C and pH 6.5, these cells will synchronously form elongate pseudomycelia, and when released into fresh medium at either 25 °C, pH 6.5, or 37 °C, pH 4.5, they will synchronously form buds. Using pH and temperature shift experiments, we have examined when cells become committed to pseudomycelium formation and bud formation under conditions conducive to each growth form respectively. It is demonstrated that in either case commitment occurs long after release from stationary phase, at approximately the same time the first evagination is visible on the cell's surface. In addition, it is demonstrated that once a released cell has formed a bud, it and its progeny lose the capacity to form pseudomycelia until they re-enter stationary phase; on the other hand, elongating pseudomycelia retain the capacity to form buds. The possible relationships of the commitment events to septation and to the cell cycle are discussed.  相似文献   

2.
The polarization of sterol- and sphingolipid-enriched domains (lipid rafts) has been linked to morphogenesis and cell movement in diverse cell types. In the yeast Saccharomyces cerevisiae, a dramatic polarization of sterol-rich domains to the shmoo tip was observed in pheromone-induced cells (M. Bagnat and K. Simons, Proc. Natl. Acad. Sci. USA 99:14183-14188, 2002). We therefore examined whether plasma membrane lipid polarization contributes to the ability of the fungal pathogen Candida albicans to grow in a highly polarized manner to form hyphae. Interestingly, staining with filipin revealed that membrane sterols were highly polarized to the leading edge of growth during all stages of hyphal growth. Budding and pseudohyphal cells did not display polarized staining. Filipin staining was also enriched at septation sites in hyphae, where colocalization with septin proteins was observed, suggesting a role for the septins in forming a boundary domain. Actin appeared to play a role in sterol polarization and hyphal morphogenesis in that both were disrupted by low concentrations of latrunculin A that did not prevent budding. Furthermore, blocking either sphingolipid biosynthesis with myriocin or sterol biosynthesis with ketoconazole resulted in a loss of ergosterol polarization and caused abnormal hyphal morphogenesis, suggesting that lipid rafts are involved. Since hyphal growth is required for the full virulence of C. albicans, these results suggest that membrane polarization may contribute to the pathogenesis of this organism.  相似文献   

3.
4.
5.
The synthesis of chitin during germ-tube formation in Candida albicans may be regulated by the first and last steps in the chitin pathway: namely l-glutamine-d-fructose-6-phosphate aminotransferase and chitin synthase. Induction of germ-tube formation with either glucose and glutamine or serum was accompanied by a 4-fold increase in the specific activity of the aminotransferase. Chitin synthase in C. albicans is synthesized as a proenzyme. N-acetyl glucosamine increased the enzymic activity of the activated enzyme 3-fold and the enzyme exhibited positive co-operativity with the substrate, UDP-N-acetylglucosamine. Although chitin synthase was inhibited by polyoxin D (K i =1.2M) this antibiotic did not affect germination. During germ-tube formation the total chitin synthase activity increased 1.4-fold and the expressed activity (in vivo activated proenzyme) increased 5-fold. These results could account for the reported 5-fold increase in chitin content observed during the yeast to mycelial transformation.Non-Standard Abbreviations GlcNac N-acetyl glucosamine - UDP-GlcNac UDP-N-acetyl glucosamine - PMSF phenylmethylsulphonylfluoride  相似文献   

6.
Candida albicans is a pathogenic fungus able to change morphology in response to variations in its growth environment. Simple inoculation of stationary cells into fresh medium at 37 degrees C, without any other manipulations, appears to be a powerful but transient inducer of hyphal formation; this process also plays a significant role in classical serum induction of hyphal formation. The mechanism appears to involve the release of hyphal repression caused by quorum-sensing molecules in the growth medium of stationary-phase cells, and farnesol has a strong but incomplete role in this process. We used DNA microarray technology to study both the resumption of growth of Candida albicans cells and molecular regulation involving farnesol. Maintaining farnesol in the culture medium during the resumption of growth both delays and reduces the induction of hypha-related genes yet triggers expression of genes encoding drug efflux components. The persistence of farnesol also prevents the repression of histone genes during hyphal growth and affects the expression of putative or demonstrated morphogenesis-regulating cyclin genes, such as HGC1, CLN3, and PCL2. The results suggest a model explaining the triggering of hyphae in the host based on quorum-sensing molecules.  相似文献   

7.
Echinocandins are a new generation of novel antifungal agent that inhibit cell wall beta(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca(2+)-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity.  相似文献   

8.
In the late logarithmic or very early stationary phase of the growth cycle, yeast cells of Candida albicans undergo a shift from susceptibility to resistance to the direct lethal action of miconazole. Regulation of this phenotypic shift was examined. Experiments based on viable count determinations and the construction of time-kill curves showed that reestablishment of resistance is independent of both pH and the attainment of some critical viable cell density. However, it was found that development of resistance requires the continued availability of an appropriate energy source toward the end of exponential growth.  相似文献   

9.
10.
11.
12.
RNA synthesis was studied in Bacillus subtilis Cgr4 grown in the mineral sporulation medium enriched with glucose up to 2% and amino acids up to 1%. To study mRNA synthesis, a method of transfer of the 3H-uridine pulse-labeled culture to the supernatant of physiologically identical, not labeled culture, followed by further incubation was used, the amount of 3H-uridine in the supernatant as well as in cells being measured. RNA was also analysed electrophoretically and distribution of the label among the fractions was determined. It is shown that mRNA synthesized in the logarithmic phase degrades up to 12% on the 2nd hour of growth during 10 min; the mRNA in the stationary phase is stable on the 7th hour of growth; no degradation is observed in the course of 2-3 hours. The beginning of degradation coincides in time with secondary induction of the synthesis of serine proteases and with the onset of sharp decrease in incorporation of 3H-uridine in RNA as well as with induction of spore morphogenesis. On the basis of electrophoretical analysis of pulse-labeled RNA, it was demonstrated that, prior to the transfer, labeled uridine was included and preserved in RNA fraction for 2-3 hours after the transfer, this fraction corresponding in mobility with mRNA in polyacrylamide gel. The following conclusion may be drawn: stable mRNAs are synthesized in the stationary phase and may be used for the translation of extracellular serine protease.  相似文献   

13.
14.
Ribosomal RNA synthesis was studied during the early phases of growth activation in a cell suspension culture derived from peanut (Arachis hypogaea, L.) cotyledon. Upon dilution from stationary phase, these cells show a characteristic lag of 3 days before the commencement of cell division. An analysis of the nature of RNA synthesized during this early period of growth showed that the cells obtained immediately upon dilution from stationary phase synthesize primarily messenger RNA and essentially no ribosomal RNA. The synthesis of ribosomal RNA is delayed for about 24 hr after which it rises sharply resulting in a 2- to 3-fold accumulation of ribosomal RNA per cell during the subsequent 24-hr period. Both the messenger RNA and the ribosomal RNA were characterized by their cellular localization; by sucrose and CsCl gradient analyses, and by the determination of their base ratios.It would appear that a major facet of the lag phase in the cell growth is the diversion of a significant part of the RNA biosynthetic apparatus from the synthesis of messenger RNA to that of ribosomal RNA.  相似文献   

15.
Aims:  Starvation stress is a condition that nonstarter lactic acid bacteria (NSLAB) normally encounter. This study was aimed to investigate starvation-induced proteins in Lactobacillus casei during stationary growth phase.
Methods and Results:  The impact of carbohydrate starvation on L. casei GCRL163 was investigated using two different media (a modified de Man, Rogosa and Sharpe broth and a semi-defined medium). Cells were grown in the presence of excess lactose (1%) or starvation (0%) and differences in the patterns of one-dimensional sodum dodecyl sulfate–polyacrylamide gel electrophoresis and two-dimensional electrophoresis of the cytosolic protein fractions were investigated. Differentially regulated proteins were identified by MALDI-TOF/TOF mass spectrometry. Many differentially regulated proteins were enzymes of various metabolic pathways involved in carbohydrate metabolism to yield energy. Differences in protein expression were also observed in the two culture conditions tested in this experiment.
Conclusion:  Numerous glycolytic enzymes were differentially regulated under lactose starvation. The differential expression of these glycolytic enzymes suggests a potential survival strategy under harsh growth conditions (i.e. lactose starvation).
Significance and Impact of the Study:  This paper reports improved understanding of stress responses and survival mechanism of NSLAB under lactose-depleted cheese-ripening condition. This knowledge of how NSLAB bacteria adapt to lactose starvation could be applied to predict the performances of bacteria in other industrial applications.  相似文献   

16.
A particulate glucosyltransferase prepared from budding and filamentous cultures of Candida albicans used uridine diphosphate glucose as sole glucosyl donor in a reaction (measured by following the incorporation of [14C]-glucose from UDP [14C]-glucose into polymer) stimulated by glucose-6-phosphate and inhibited by adenosine triphosphate and guanosine triphosphate. The radiolabelled reaction product was solubilized by -amylase, and, on oxidation with periodate followed by reduction with borohydride and acid hydrolysis, yielded erythritol and glycerol in the ratio of 4 to 1. The radiolabelled glucosyl residues were attached to an endogenous acceptor of high molecular weight.  相似文献   

17.
18.
Regulation of superoxide dismutase synthesis in Candida albicans   总被引:2,自引:0,他引:2  
The synthesis of superoxide dismutase [SOD: EC 1.15.1.1] in response to various cultural conditions was examined in Candida albicans, an opportunistic yeast which causes candidiasis in immunosuppressed patients. SOD plays an important role in protecting cells from the oxidative damage of superoxide radicals. Maximum SOD activity was found after 72 hrs of yeast growth. The optimum pH and temperature for the SOD activity were 7 and 40 °, respectively. The major SOD activity was found in the cytosol fraction and the level of extracellular SOD was very low. The enzyme was stimulated to varying degrees by cholic acid, procaine and tocopherol. On the basis of inhibitor studies and other enzyme properties, the isolated enzyme from C. albicans is identified as copper and zinc superoxide dismutase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, triacylglycerol mobilization for phospholipid synthesis occurs during growth resumption from stationary phase, and this metabolism is essential in the absence of de novo fatty acid synthesis. In this work, we provide evidence that DGK1-encoded diacylglycerol kinase activity is required to convert triacylglycerol-derived diacylglycerol to phosphatidate for phospholipid synthesis. Cells lacking diacylglycerol kinase activity (e.g. dgk1Δ mutation) failed to resume growth in the presence of the fatty acid synthesis inhibitor cerulenin. Lipid analysis data showed that dgk1Δ mutant cells did not mobilize triacylglycerol for membrane phospholipid synthesis and accumulated diacylglycerol. The dgk1Δ phenotypes were partially complemented by preventing the formation of diacylglycerol by the PAH1-encoded phosphatidate phosphatase and by channeling diacylglycerol to phosphatidylcholine via the Kennedy pathway. These observations, coupled to an inhibitory effect of dioctanoyl-diacylglycerol on the growth of wild type cells, indicated that diacylglycerol kinase also functions to alleviate diacylglycerol toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号