首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cloned and sequenced COX12, the nuclear gene for subunit VIb of Saccharomyces cerevisiae cytochrome c oxidase. This subunit, which was previously not found in cytochrome c oxidase purified from S. cerevisiae, has a deduced amino acid sequence which is 41% identical to the sequences of subunits VIb of bovine and human cytochrome c oxidases. The chromosomal copy of COX12 was replaced with a plasmid-derived copy of COX12, in which the coding region for the suspected cytochrome oxidase subunit was replaced with the yeast URA3 gene. The resulting Ura+ deletion strain grew poorly at room temperature and was unable to grow at 37 degrees C on ethanol/glycerol medium, whereas growth was normal at both temperatures on dextrose. This temperature-dependent, petite phenotype of the deletion strain was complemented to wild-type growth with a single copy plasmid carrying COX12. Cytochrome c oxidase activity in mitochondrial membranes from the cox12 deletion strain is decreased to 5-15% of that in membranes from the wild-type parent, and this activity is restored to normal when the cox12 deletion strain is complemented by the plasmid-borne COX12. Optical spectra of mitochondrial membranes from the cox12 deletion strain revealed that optically detectable cytochrome c oxidase is assembled at room temperature and at 37 degrees C, although the heme a + a3 absorption is diminished approximately 50%. The N-terminal amino acid sequence of the protein encoded by COX12 is identical to the N-terminal sequence of a subunit found in yeast cytochrome c oxidase purified by a new procedure (Taanman, J.-W., and Capaldi, R. A. (1992) J. Biol. Chem. 267, 22481-22485). We conclude that COX12 encodes a subunit of yeast cytochrome c oxidase which is essential during assembly for full cytochrome c oxidase activity but apparently can be removed after the oxidase is assembled, with retention of oxidase activity. This is the first instance in which deletion of a subunit of cytochrome c oxidase results in assembly of optically detectable cytochrome c oxidase but having markedly diminished activity.  相似文献   

2.
The synthesis of cytochrome oxidase in Saccharomyces cerevisiae was recently shown to require a protein encoded by the nuclear gene COX10. This protein was found to be homologous to the putative protein product of the open reading frame ORF1 reported in one of the cytochrome oxidase operons of Paracoccus denitrificans. In the present study we demonstrate the existence in yeast of a second nuclear gene, COX11, whose encoded protein is homologous to another open reading frame (ORF3) present in the same operon of P. denitrificans. Mutations in COX11 elicit a deficiency in cytochrome oxidase. In this and in other respects cox11 and cox10 mutants have very similar phenotypes. An antibody has been obtained against the yeast COX11 protein. The antibody recognizes a 28 kd protein in yeast mitochondria, consistent with the size of the protein predicted from the sequence of COX11. The COX11 protein is tightly associated with the mitochondrial membrane but is not a component of purified cytochrome oxidase. An analysis of cytochrome oxidase subunits in wild type and in a cox11 mutant suggests that the COX11 protein is not required either for synthesis or transport of the subunit polypeptides into mitochondria. It seems more probable that COX11 protein exerts its effect at some terminal stage of enzyme synthesis, perhaps in directing assembly of the subunits.  相似文献   

3.
A nuclear pet mutant of Saccharomyces cerevisiae that is defective in the structural gene for subunit V of cytochrome c oxidase has been identified and used to clone the subunit V gene (COX5) by complementation. This mutant, E4-238 [24], and its revertant, JM110, produce variant forms of subunit V. In comparison to the wild-type polypeptide (Mr = 12,500), the polypeptides from E4-238 and JM110 have apparent molecular weights of 9,500 and 13,500, respectively. These mutations directly alter the subunit V structural gene rather than a gene required for posttranslational processing or modification of subunit V because they are cis-acting in diploid cells; that is, both parental forms of subunit V are produced in heteroallelic diploids formed from crosses between the mutant, revertant, and wild type. Several plasmids containing the COX5 gene were isolated by transformation of JM28, a derivative of E4-238, with DNA from a yeast nuclear DNA library in the vector YEp13. One plasmid, YEp13-511, with a DNA insert of 4.8 kilobases, was characterized in detail. It restores respiratory competency and cytochrome oxidase activity in JM28, encodes a new form of subunit V that is functionally assembled into mitochondria, and is capable of selecting mRNA for subunit V. The availability of mutants altered in the structural gene for subunit V (COX5) and of the COX5 gene on a plasmid, together with the demonstration that plasmid-encoded subunit V is able to assemble into a functional holocytochrome c oxidase, enables molecular genetic studies of subunit V assembly into mitochondria and holocytochrome c oxidase.  相似文献   

4.
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.  相似文献   

5.
From the amino acid sequence of yeast cytochrome c oxidase subunit VIII published previously (Power, S. D., Lochrie, M.A., Patterson, T.E., and Poyton, R.C. (1984) J. Biol. Chem. 259, 6571-6574), we have synthesized a pair of oligonucleotide probes and used them to identify COX8, its structural gene. By genomic Southern blot analysis and disruption of the COX8 chromosomal locus, we have shown that this gene is present in one copy per haploid genome and that its product, subunit VIII, is essential for maximal levels of cellular respiration and cytochrome c oxidase activity. Alignment of the amino acid sequence predicted from the DNA sequence of COX8 with the determined amino acid sequence of subunit VIII indicates that mature subunit VIII is derived from a larger precursor that extends from both the NH2 and COOH termini of the mature polypeptide. Thus, like many other nuclear coded mitochondrial proteins, subunit VIII is derived from a precursor which carries a leader peptide. In addition, this precursor, like that for yeast cytochrome c oxidase subunit VIIa, appears to carry a four-amino acid "trailer peptide" at its COOH terminus.  相似文献   

6.
The gene COX VII coding for yeast cytochrome c oxidase subunit VII has been cloned by a two-step procedure. Two degenerate oligonucleotides corresponding to amino- and carboxyl-terminal protein segments were used in a polymerase chain reaction for the amplification of a major portion of subunit VII (residues 1-52), which was then used for the cloning of complete COX VII. From the nucleotide sequence, an additional amino-terminal and two additional carboxyl-terminal amino acids are predicted as compared with the described primary sequence (Power, S. D., Lochrie, M. A., and Poyton, R. O. (1986) J. Biol. Chem. 261, 9206-9209). Beside subunit VIIa the subunit described here is the only nuclear encoded subunit of cytochrome c oxidase in yeast without a leader sequence. COX VII exists as a single copy per haploid genome as shown by Southern blot and gene disruption. Null mutants produced by gene disruption at the COX VII locus were respiratory-deficient. No cytochrome c oxidase activity was detectable nor was there an assembly of the oxidase complex.  相似文献   

7.
8.
The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.  相似文献   

9.
10.
The nuclear gene for subunit IV of cytochrome oxidase (COX4) in Saccharomyces cerevisiae contains a 342 bp intron which is contained entirely within the 5' leader of the message. Splicing of the intron results in removal of several small open reading frames; subsequently, the COX4 AUG becomes the 5' proximal initiation codon. A strain with an rna2- mutation fails to splice mRNA efficiently at restrictive temperature and was used to map the intron splice junctions by RNase protection. Two major mRNA initiation sites were mapped by primer extension of synthetic oligodeoxynucleotides. The splice junctions and internal TACTAAC box conform to consensus sequences previously determined from other yeast introns. One gene for subunit V of cytochrome oxidase (COX5b) has also been shown to contain an intron. The significance of introns in two nuclear genes encoding subunits of cytochrome oxidase is discussed.  相似文献   

11.
The gene for yeast cytochrome c oxidase subunit V, COX5, has been isolated from a Saccharomyces cerevisiae DNA library by complementation of a cytochrome c oxidase subunit V mutant, JM28. One complementing plasmid, YEp13-511, with a DNA insert of 4.8 kilobase pairs, has been characterized in detail. This plasmid restores respiratory competency in JM28, results in increased cytochrome c oxidase activity and a new form of subunit V in JM28 mitochondria, and is capable of selecting mRNA for subunit V. These results indicate that YEp13-511 carries the COX5 gene and that the subunit V encoded by this plasmid gene is capable of entering the mitochondrion and assembling into a functional holocytochrome c oxidase.  相似文献   

12.
In the vast majority of eukaryotic organisms, the mitochondrial cox2 gene encodes subunit II of cytochrome c oxidase (COX2). However, in some lineages including legumes and chlorophycean algae, the cox2 gene migrated to the nucleus. Furthermore, in chlorophycean algae, this gene was split in two different units. Thereby the COX2 subunit is encoded by two independent nuclear genes, cox2a and cox2b, and mitochondria have to import the cytosol-synthesized COX2A and COX2B subunits and assemble them into the cytochrome c oxidase complex. In the chlorophycean algae Chlamydomonas reinhardtii and Polytomella sp., the COX2A precursor exhibits a long (130-140 residues), cleavable mitochondrial targeting sequence (MTS). In contrast, COX2B lacks an MTS, suggesting that mitochondria use different mechanisms to import each subunit. Here, we explored the in vitro import processes of both, the Polytomella sp. COX2A precursor and the COX2B protein. We used isolated, import-competent mitochondria from this colorless alga. Our results suggest that COX2B is imported directly into the intermembrane space, while COX2A seems to follow an energy-dependent import pathway, through which it finally integrates into the inner mitochondrial membrane. In addition, the MTS of the COX2A precursor is eliminated. This is the first time that the in vitro import of split COX2 subunits into mitochondria has been achieved.  相似文献   

13.
A nuclear gene (QCR9) encoding the 7.3-kDa subunit 9 of the mitochondrial cytochrome bc1 complex from Saccharomyces cerevisiae has been isolated from a yeast genomic library by hybridization with a degenerate oligonucleotide corresponding to nine amino acids proximal to the N terminus of purified subunit 9. QCR9 includes a 195-base pair open reading frame capable of encoding a protein of 66 amino acids and having a predicted molecular weight of 7471. The N-terminal methionine of subunit 9 is removed posttranslationally because the N-terminal sequence of the purified protein begins with serine 2. The ATG triplet corresponding to the N-terminal methionine is separated from the open reading frame by an intron. The intron is 213 base pairs long and contains previously reported 5' donor, 3' acceptor, and TACTAAC sequences necessary for splicing. The splice junctions, as well as the 5' end of the message, were confirmed by isolation and sequencing of a cDNA copy of QCR9. In addition, the intron contains a nucleotide sequence in which 15 out of 18 nucleotides are identical with a sequence in the intron of COX4, the nuclear gene encoding cytochrome c oxidase subunit 4. The deduced amino acid sequence of the yeast subunit 9 is 39% identical with that of a protein of similar molecular weight from beef heart cytochrome bc1 complex. If conservative substitutions are allowed for, the two proteins are 56% similar. The predicted secondary structure of the 7.3-kDa protein revealed a single possible transmembrane helix, in which the amino acids conserved between beef heart and yeast are asymmetrically arranged along one face of the helix, implying that this domain of the protein is involved in a conserved interaction with another hydrophobic protein of the cytochrome bc1 complex. Two yeast strains, JDP1 and JDP2, were constructed in which QCR9 was deleted. Both strains grew very poorly, or not at all, on nonfermentable carbon sources and exhibited, at most, only 5% of wild-type ubiquinol-cytochrome c oxidoreductase activity. Optical spectra of mitochondrial membranes from the deletion strains revealed slightly reduced levels of cytochrome b. When JDP1 and JDP2 were complemented with a plasmid carrying QCR9, the resulting yeast grew normally on ethanol/glycerol and exhibited normal cytochrome c reductase activities and optical spectra. These results indicate that QCR9 encodes a 7.3-kDa subunit of the bc1 complex that is required for formation of a fully functional complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
COX19, a nuclear gene of Saccharomyces cerevisiae, was cloned by transformation of a respiratory-deficient mutant from complementation group G188 of a pet mutant collection. The gene codes for an 11-kDa protein (Cox19p) required for expression of cytochrome oxidase. Because cox19 mutants are able to synthesize the mitochondrial and nuclear gene products of cytochrome oxidase, Cox19p probably functions post-translationally during assembly of the enzyme. Cox19p is present in the cytoplasm and mitochondria, where it exists as a soluble intermembrane protein. This dual location is similar to what was previously reported for Cox17p, a low molecular weight copper protein thought to be required for maturation of the CuA center of subunit 2 of cytochrome oxidase. The similarity in their subcellular distribution, combined with the presence of four cysteines in Cox19p that align with a subset of the cysteines in Cox17p, suggests that like the latter, Cox19p may function in metal transport to mitochondria.  相似文献   

15.
16.
Using synthetic oligodeoxyribonucleic acid probes we have identified and isolated COX6, the structural gene for subunit VI of cytochrome c oxidase from Saccharomyces cerevisiae. The nucleotide sequence of COX6 predicts an amino acid sequence, for the mature subunit VI polypeptide, which is in perfect agreement with that determined previously. The nucleotide sequence of COX6 also predicts that subunit VI is derived from a precursor with a highly basic 40-amino acid NH2-terminal presequence. This precursor has been observed after in vitro translations programmed by yeast poly(A+)RNA. Northern blot analysis of poly(A+) RNA from strain D273-10B reveals that COX6 is homologous to three RNAs of 1800, 900, and 700 bases in length. By means of Southern blot analysis, the cloned gene was shown to be co-linear with yeast chromosomal DNA and to exist in a single copy in the yeast genome. An additional open reading frame, consisting of 82 codons, terminates 22 codons upstream from COX6. It is "in frame" with the COX6 coding region.  相似文献   

17.
18.
19.
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.  相似文献   

20.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号