首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atrial gland is an exocrine organ that secretes into the oviduct of Aplysia californica and expresses three homologous genes belonging to the egglaying hormone gene family. Although post-translational processing of the egg-laying hormone precursor in the neuroendocrine bag cells has been examined in detail, relatively little is known about the post-translational processing of egg-laying hormone-related gene products in the atrial gland. A combination of morphologic techniques that included light-microscopic histology and immunocytochemistry, transmission electron microscopy, and immuno-electron microscopy were used to localize egg-laying hormone-related peptides in the atrial gland and to evaluate the characteristic morphology of their secretory cells. Results of these studies showed that there were at least three major types of secretory cells in the atrial gland (types 1–3). Significantly, of these three cell types, only type 1 was immunoreactive to antisera against egg-laying hormone-related precursor peptides. The immunoreactivity studies established that all three egg-laying hormone-related precursor genes are expressed in type-1 cells and indicated that the processing of these precursors also occurs within the secretory granules of this cell type. Evidence was also obtained that proteolytic processing of the egg-laying hormone-related precursors differed significantly from that observed in the bag cells. In contrast to the bag cells, the NH2-terminal and COOH-terminal products of the egg-laying hormone-related precursors of the atrial gland were not sorted into different types of vesicles.  相似文献   

2.
Summary Ovulation and egg-laying behavior in the pond snailLymnaea stagnalis are controlled by the neuroendocrine caudodorsal cells (CDCs), constituting two clusters — one in each cerebral ganglion — totaling about 100 cells. In vitro studies have shown that the CDCs release their products, including the ovulation hormone, during a burst of spiking activity lasting for about 30 min (CDC discharge). This burst can be initiated by repeated intracellular stimulation with depolarizing current pulses, in which case the firing pattern is termed afterdischarge.Using cuff electrodes we recorded extracellularly from the intercerebral commissure, (the neurohaemal area of the CDCs) to study the activity of these cells during spontaneous egg-laying of freely behaving snails.The cuff-implanted snails showed long-lasting spiking activity prior to every bout of egg-laying. These spontaneous long-lasting discharges had several features in common with the intracellularly recorded activity of the CDCs in vitro: the time courses of spike broadening and of firing rates in the cuff-implanted animals were very similar to the characteristic patterns found in the isolated brain. Firing rates were higher and durations were longer in the cuff-implanted animals, however. In vitro, the duration of the discharge could be prolonged appreciably by recording in blood instead of normal saline, indicating that the bathing fluid normally used causes shortening of the CDC discharge. The way in which CDC discharges are triggered is discussed as a possible explanation for the differences in firing rates.The pattern of locomotion during spontaneous egg-laying was largely similar in cuff-implanted and unoperated animals. The level of locomotion was lower in the experimental animals. In addition, the rate of locomotion only partially returned to pre-oviposition levels. This is ascribed to the effect of the operation.It is concluded that the afterdischarge is the natural firing pattern of the caudodorsal cells ofLymnaea, and that this firing pattern constitutes the central event in the egg-laying behavior of this animal.Abbreviations CDC caudodorsal cells - CDCH caudodorsal cell hormone - CDCA caudodorsal cell autotransmitter  相似文献   

3.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

4.
Summary The cerebral caudodorsal cells of the pulmonate snail Lymnaea stagnalis control egg laying and egglaying behavior by releasing various peptides derived from two precursors. The biosynthesis, storage, intracellular breakdown and release of three caudodorsal cell peptides were studied by means of immuno-electron microscopy using antisera raised to fragments of these peptides: (1) Caudodorsal Cell Hormone-I (CDCH-I; derived from precursor I), (2) Caudodorsal Cell Hormone-II (CDCH-II; from precursor II), and (3) -Caudodorsal Cell Peptide ( CDCP; from both precursors). After affinity purification of the antisera, the specificity of the sera was confirmed with dotting immunobinding assays. From the ultrastructural immunocytochemical data it has been concluded that the precursor molecules are cleaved at the level of the Golgi apparatus after which the C-terminal parts (containing CDCP) and N-terminal parts (containing CDCH-I or CDCH-II) are sorted and preferentially packaged into large electron-dense granules (MD 150 nm), respectively. Very probably, the content of the large electron-dense granules is degraded within the cell body. The immunoreactivity of the secretory granules increases during discharge from the Golgi apparatus, indicating further processing. At least a portion of the secretory granules contains all three peptides, as shown by double and triple immunopositive stainings whereas other granules appear to contain only one or two of these peptides. The caudodorsal cells release multiple peptides via exocytosis from neurohemal axon terminals into the hemolymph and from blindly ending axon collaterals into the intercellular space of the cerebral commissure (nonsynaptic release).  相似文献   

5.
Summary A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix- nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix- nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.  相似文献   

6.
7.
alpha CDCP is a neuropeptide produced by the caudodorsal cells of Lymnaea stagnalis and encoded by the genes of the egg-laying hormone (ELH). The use of a polyclonal antiserum raised against alpha CDCP resulted in the detection of about 800 immunoreactive neurons in the parietal ganglia and a small population (60 cells) in the cerebral ganglia of Helix aspersa. As the genes of ELH are well conserved among the gastropod species, these data designate the parietal ganglia as a putative source for the egg-laying hormone in Helix aspersa.  相似文献   

8.
9.
K. Manning 《Planta》1994,194(1):62-68
Changes in messenger RNA during the development of the strawberry (Fragaria ananassa Duch.), a non-climacteric fruit, were analysed by extracting total RNA and separating the in-vitro translated products by two-dimensional polyacrylamide gel electrophoresis. Alterations in numerous messenger RNAs accompanied fruit development between the immature green stage and the overripe stage, with prominent changes detected at or before the onset of ripening. A number of messenger RNAs undetectable in immature green fruit increased as the fruit matured and ripened. Others showed a marked decrease in advance of the ripening phase. A further group of messenger RNAs was prominent in immature and ripe fruit but absent just prior to the turning stage. Removing the achenes from a segment of the fruit accelerated anthocyanin accumulation in the de-achened portion and produced a pattern of translated polypeptides similar to normal ripe fruit. Application of the synthetic auxin 1-naphthaleneacetic acid to the de-achened receptacle produced a translation pattern similar to that in mature green fruit. These findings indicate that ripening in strawberry is associated with the expression of specific genes.  相似文献   

10.
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.  相似文献   

11.
12.
Regulatory gene expression during the patterning of molluscan shells has only recently drawn the attention of scientists. We show that several Hox genes are expressed in association with the shell gland and the mantle in the marine vetigastropod Gibbula varia (L.). The expression of Gva-Hox1, Gva-Post2, and Gva-Post1 is initially detected in the trochophore larval stage in the area of the shell field during formation of embryonic shell. Later, during development, these genes are expressed in the mantle demonstrating their continuous role in larval shell formation and differentiation of mantle edge that secretes the adult shell. Gva-Hox4 is expressed only late during the development of the veliger-like larva and may also be involved in the adult shell morphogenesis. Additionally, this gene also seems to be associated with secretion of another extracellular structure, the operculum. Our data provide further support for association of Hox genes with shell formation which suggest that the molecular mechanisms underlying shell synthesis may consist of numerous conserved pattern-formation genes. In cephalopods, the only other molluscan class in which Hox gene expression has been studied, no involvement of Hox genes in shell formation has been reported. Thus, our results suggest that Hox genes are coopted to various functions in molluscs.  相似文献   

13.
14.
15.
16.
17.
18.
Translational control by the 3′untranslated regions (3′UTRs) of mRNAs contributes to important events throughout the development of C. elegans. In oocytes and early embryos, maternal mRNAs are controlled by 3′UTR elements to restrict translation of their protein products to specific blastomeres. Localized translation is probably critical for specifying blastomere identity. In both germline and somatic cells, mRNAs from sex determining genes are translationally repressed by 3′UTR controls. These controls balance the activities that specify male and female cell fates. During larval development, the temporal sequence of cell lineages requires 3′UTR-mediated regulation of heterochronic genes by a small non-protein coding RNA. We review what is known about these translational control mechanisms in C. elegans. This overview illustrates that translational control by 3′UTR elements is a powerful mechanism for regulating the expression of multiple gene products in diverse cell types during development of a multi-cellular animal.  相似文献   

19.
Summary The cerebral caudodorsal cells (CDC) of the pulmonate snail Lymnaea stagnalis are involved in the control of egg laying and associated behaviour by releasing various peptides. One of these is the ovulation hormone (CDCH). The cellular dynamics of this peptide have been studied using an antiserum raised to a synthetic portion of CDCH comprising the 20–36 amino acid sequence. With the secondary antibody-immunogold technique, specific immunoreactivity was found in all CDC. Rough endoplasmic reticulum and Golgi apparatus showed very little reactivity as did secretory granules that were in the process of being budded off from the Golgi apparatus. However, secretory granules that were being discharged from the Golgi apparatus, were strongly reactive. Secretory granules within lysosomal structures revealed various degrees of immunoreactivity, indicating their graded breakdown. Large electrondense granules, formed by the Golgi apparatus and thought to be involved in intracellular degradation of secretory material, were only slightly reactive. In the axon terminals secretory granules released their contents into the haemolymph by the process of exocytosis. The exteriorized contents were in most cases clearly immunopositive.The possibility has been discussed that CDCH is cleaved from its polypeptide precursor within secretory granules during granule discharge from the Golgi apparatus; subsequently, the mature secretory granules would be transported towards the neurohaemal axon terminals where they release CDCH into the haemolymph. Superfluous secretory material would be degraded by the lysosomal system including the large electron-dense granules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号