首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this investigation was to determine the relationship between the morphology of the cumulus-oocyte-complexes (COCs) and the meiotic configuration of oocytes as an LH peak mimicked by hCG. Estrus was synchronized in a total of 29 crossbred Landrace gilts by feeding Regumate for 15 d and administering 1000 IU PMSG. The LH peak was simulated by treatment with 500 IU hCG at 80 h after PMSG. Endoscopic oocyte recovery was carried out 2 h before and 10, 22 and 34 h after hCG. Only macroscopically healthy follicles with a diameter of more than 5 mm were punctured. Altogether, 410 follicles from 57 ovaries were punctured and 251 COCs were aspirated. Oocyte recovery rate increased from 48.5% (P < 0.01) of the early, not yet preovulatory follicles (2 h before hCG) to 80.8% of late preovulatory follicles (34 h after hCG). Cumulus morphology in COCs recovered 2 h before and 10 h after hCG was heterogeneous, with most (72.9 to 57.4%; P < 0.01) showing a compact or slightly expanded cumulus. Starting at about 22 h after hCG, COC morphology changed dramatically (86.7% of COCs with expanded cumulus; P < 0.01), and 34 h after hCG, 98.3% of the COCs had only an expanded cumulus. The percentage of oocytes with a mature meiotic configuration increased (11.2; 7.1; 41.4 and 70.2%, respectively, n = 238 oocytes; P < 0.01) as the interval post hCG increased (-2, 10, 22, 34 h, respectively). Meiotic configuration was related to COC morphology: compact COCs--88.9% diplotene, expanded COCs--53.8% metaphase II (M-II), and denuded oocytes--69.2% degenerated chromatin. These results indicate that there is a relationship between oocyte recovery rate, COC morphology, and meiotic configuration and preovulatory follicle maturation after the application of hCG.  相似文献   

2.
Angiogenesis in the preovulatory follicle is confined to the theca cell layers, and penetration of capillaries through the basement membrane into the granulosa cell layers does not occur until after ovulation. However, elevated expression of the angiogenic growth factor (VEGF) has been reported in the cumulus cells surrounding the oocyte, which are expelled from the follicle during ovulation. This spatial and temporal discrepancy between VEGF expression and angiogenesis was studied here in the rat ovarian follicle, and we showed that cumulus cells secrete to the follicular fluid, in addition to VEGF, material with antiangiogenic activity that blocks endothelial cell proliferation, migration, and capillary formation in vitro. Hyaluronic acid produced by the cumulus cells can account for this antiangiogenic activity. Degradation of hyaluronic acid by hyaluronidase restored proliferation and migration of endothelial cells directed toward the cumulus. Inhibition of hyaluronic acid synthesis with 6-diazo-5-oxo-1-norleucine restored endothelial proliferation and migration in vitro, and it also resulted in early penetration of capillaries across the follicular basement membrane in vivo. These results support the role of hyaluronic acid produced by the cumulus cells as a high-molecular-weight, antiangiogenic shield that prevents premature vascularization of the preovulatory follicle by blocking endothelial cell migration and proliferation.  相似文献   

3.
Ovulation is a complex process initiated by the preovulatory LH surge, characterized by cumulus oocyte complex (COC) expansion and completed by the release of a mature oocyte. Although many ovarian genes that impact ovulation have been identified, we hypothesized that genes selectively expressed in COCs would be overlooked by approaches using whole ovary or granulosa cell samples. RNA isolated from COCs collected from preovulatory follicles of equine chorionic gonadotropin (CG) primed mice and at selected times after human CG treatment was subjected to microarray analyses and results confirmed by RT-PCR analyses, Western blotting, and immunofluorescent studies. A remarkable number of genes were up-regulated in COCs including Areg, Ereg, and Btc. Several genes selectively expressed in cumulus cells compared with granulosa cells were related to neuronal (Mbp, Tnc, Nts) or immune (Alcam, Pdcd1, Cd34, Cd52, and Cxcr4) cell function. In addition to Sfrp2, other members of the Wnt/Fzd family (Sfrp4, Fdz1 and Fdz2) were expressed in COCs. Thus, there is a cumulus cell-specific, terminal differentiation process. Furthermore, immunofluorescent analyses documented that cumulus cells are highly mitotic for 4-8 h after human CG and then cease dividing in association with reduced levels of Ccnd2 mRNA. Other down-regulated genes included: Cyp19a1, Fshr, Inhb, and the oocyte factors Zp1-3 and Gja4. In summary, the vast number of matrix, neuronal, and especially immune cell-related genes identified by the gene- profiling data of COCs constitutes strong and novel evidence that cumulus cells possess a repertoire of immune functions that could be far greater than simply mediating an inflammatory-like response.  相似文献   

4.
Ovulation is the complex, inflammatory-like process by which the cumulus oocyte complex (COC) is released from a mature, preovulatory follicle through a rupture site at the ovarian surface and requires expression of genes that generate and stabilize the expanded extracellular COC matrix. Gene profiling analyses of COCs at selected time intervals during ovulation revealed that many genes associated with immune related surveillance functions were also induced in cumulus cells. Specifically, cell surface signaling molecules known as pattern recognition receptors that act as sensors of the external environment important for the innate immune system to detect self from nonself or altered self are induced and/or expressed in cumulus cells as well as granulosa cells. These include the complement factor q1, CD14, and the Toll-like receptors (TLRs) 4, 8, and 9 as well as mediators of TLR activation, myeloid differentiation primary response gene 88 and interferon regulatory factor 3. COCs exposed to bacterial lipopolysaccharide exhibit enhanced phosphorylation of p38MAPK, ERK1/2 and nuclear factor-kappaB and increased expression of Il6 and Tnfa target genes, documenting that the TLR pathway is functional. Cumulus cells and granulosa cells also express the scavenger receptors CD36 and scavenger receptor type B1 and exhibited phagocytic uptake of fluorescently tagged bacterial particles. Collectively, these results provide novel evidence that cumulus cells as well as granulosa cells express innate immune related genes that may play critical roles in surveillance and cell survival during the ovulation process.  相似文献   

5.
The distribution of binding sites for human chorionic gonadotropin (hCG) in the preovulatory follicle was studied by autoradiography. An ovulatory dose (10 IU/rat) of [125I]hCG (1.4 muCi/IU) was administered intravenously, and large Graafian follicles were isolated 3 h later by microdissection. Injection of excess unlabeled hCG (500 IU/rat) prevented uptake of radioactivity by the follicle, indicating that binding of iodinated hormone was confined to specific and saturable receptor sites. The density of bound hormone molecules was highest in the theca interna and in three to four layers of mural granulosa cells adjacent to the basement membrane; labeling was chiefly associated with the cell borders. No significant binding could be detected either on the oocyte or on the cumulus cells surrounding the oocyte. We therefore suggest that the induction of ovum maturation does not require attachment of the hormone to the oocyte itself or to follicle cells in its immediate vicinity.  相似文献   

6.
7.
In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.  相似文献   

8.
In this study, we evaluated the distribution and oxidative activity of mitochondria in ex vivo pre-ovulatory porcine oocytes using the fluorescence probe MitoTracker CMTM Ros Orange. Cumulus-oocyte complexes (COCs) were classified according to cumulus morphology and time from hCG administration. The meiotic configuration of the oocytes and the degree of apoptosis in the surrounding cumulus cells were also evaluated. Estrus was synchronized in 45 crossbred Landrace gilts by feeding altrenogest for 15 days and administering 1000 IU PMSG on Day 16. The LH peak was simulated by treatment with 500 IU hCG, given 80 h after PMSG. Endoscopic oocyte recovery was carried out 2 h before or 10, 22, or 34 h after hCG administration. Altogether 454 COCs were aspirated from follicles with a diameter of more than 5 mm. Cumulus morphology in the majority of COCs recovered 2 h before and 10 h after hCG was compact (60.4 and 52.7%, respectively; P<0.05). At 22 h after hCG, COC morphology changed significantly from 10 h dramatically: 74% of COCs had an expanded cumulus (P<0.01). At 34 h after hCG, 100% of recovered COCs had an expanded cumulus. The percentage of oocytes with a mature meiotic configuration differed among COC morphologies and increased as the interval after hCG administration increased (P<0.05). The type of mitochondrial distribution in the oocytes (n=336) changed from homogeneous to heterogeneous as the interval after hCG administration increased (P<0.01) and was associated with the cumulus morphology. Representative mitochondrial distributions were found as follows: -2 h: fine homogeneous in compact and dispersed COCs; 10 h: granulated homogeneous in compact and dispersed COCs; 22 h: granulated homogeneous in expanded COCs; and 34 h: granulated heterogeneous and clustered heterogeneous in expanded COCs (P<0.01). The oxidative activity of mitochondria measured by fluorescence intensity (Em: 570 nm) per oocyte after Mitotracker CMTM Ros Orange labeling increased in the oocyte as the post-hCG interval increased (P<0.01) and depended on the type of mitochondrial distribution. Lowest oxidative activity of mitochondria was found in oocytes with fine homogeneous distribution (253.1+/-9.4 microA). The oxidative activity increased (334.4+/-10.3 microA) in oocytes with granulated homogeneous distribution of mitochondria, and reached highest level in oocytes with granulated heterogeneous (400.9+/-13.0 microA) and clustered heterogeneous distributions (492.8+/-13.9 microA) (P<0.01). Mitochondrial activity in oocytes coincided with apoptosis in surrounding cumulus cells which increased in a time-dependent manner during pre-ovulatory maturation in vivo (P<0.01). These results indicate that there is a relationship between meiotic progression, cumulus expansion and mitochondrial redistribution and their oxidative activity during final pre-ovulatory maturation in pig oocytes. It appears that increased levels of mitochondrial activities in oocytes are correlated to increased levels of apoptosis in surrounding cumulus cells, in which mitochondria may play a role.  相似文献   

9.
Mural and cumulus granulosa cells synthesize hyaluronic acid (HA) and expand in vitro in response to follicle-stimulating hormone and a soluble factor(s) produced by fully grown oocytes. In the present study we examined HA synthesis and extracellular matrix organization by the two cell populations in vivo during the preovulatory period. After injection of human chorionic gonadotropin into pregnant mares' serum gonadotropin-primed animals, a progressive increase in HA synthesis was observed by the cumulus cell-oocyte complex (COC), and by the mural granulosa cells adjacent to the antrum (antral granulosa cells). The outermost layers of mural granulosa cells (peripheral granulosa cells) did not synthesize HA. Net HA synthesis was approximately 4 pg/cell for COCs isolated after full expansion induced either in vivo or in vitro, whereas the total HA content and cell number in the ovulated COC (approximately 11 ng HA and approximately 3000 cells per COC) were about threefold higher than for COCs expanded in vitro (approximately 4 ng HA and approximately 1000 cells per COC). The increased cell content of ovulated COCs appears to be primarily the result of inclusion of proximal mural granulosa cells which synthesize HA in response to the oocyte factor(s) and become incorporated in the expanded COC extracellular matrix mass. Media conditioned by oocytes enclosed in the cumulus cell mass (intact COCs) contained only 10-20% of the HA-stimulatory activity of media conditioned by an equal number of isolated oocytes when tested on mural granulosa cell cultures. Further, HA-stimulatory activity of media conditioned by isolated oocytes was dramatically reduced (approximately 70%) by preincubation for 5 hr with cumulus cells compared to preincubation in the absence of cells. The results suggest that differences in HA synthesis between subregions of membrana granulosa depend on a diffusion gradient of the oocyte factor(s).  相似文献   

10.
The avidin-biotin immunoperoxidase method and antisera to purified porcine relaxin were used to localize relaxin in sections of follicles from pregnant mare's serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG)-primed pigs during preovulatory development. Prepubertal pigs were treated i.m. with PMSG (750 IU) and 72 h later with hCG (500 IU) to induce follicular development and ovulation. Follicles were collected from untreated gilts or from gilts 24, 48, 60, 72, 84, 96, or 108 h after PMSG treatment. Light immunostaining in the theca interna was observed early in follicular development, at 48 and 60 h post-PMSG. At 72 h post-PMSG, relaxin immunostaining in the theca interna of the preovulatory follicle was more intense. After hCG treatment, the intense thecal immunostaining persisted and was apparent 84 and 96 h after PMSG. At about 6 h prior to expected ovulation (108 h post-PMSG), there was thinning of the follicle wall and a reduction in relaxin immunostaining in the theca interna. Immunoactive relaxin was not detected in follicles from untreated gilts, follicles 24 h post-PMSG, small healthy or atretic follicles, or in granulosa cells, theca externa or ovarian stroma, at any of the time points studied. These studies support the hypothesis that the theca interna is the primary source of follicular relaxin and provide further evidence for a paracrine role for relaxin in the ovulatory process.  相似文献   

11.
The mucified cumulus oophorus represents an outer enveloping layer around ovulated mammalian oocytes. This coat in its definitive expanded form appears late in the preovulatory development as a result of intensive secretion of intercellular matrix by cumulus cells. We have shown recently that antibodies to the cumulus matrix inhibit human fertilization in vitro. This study was undertaken to assess, in an animal model, the effects of anticumulus oophorus antibodies on fertility by use of different passive immunization protocols. A purified anticumulus immunoglobulin fraction was prepared from hyperimmune rabbit serum and administered at different times before and after mating to mice superovulated with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). A dose-dependent negative effect of this anticumulus antibody preparation on the number of fertilized eggs recovered from the oviducts of treated animals was observed when the antibodies were given before mating. High antibody doses also interfered with oocyte maturation and ovulation if applied on the day of eCG treatment, but no effects on these processes were found when the antibodies were given on the day of hCG treatment. The antifertility effect of anticumulus antibodies was reversible and the antibodies did not affect postfertilization development. These findings make cumulus oophorus antigens serious candidates for the development of a contraceptive vaccine.  相似文献   

12.
A reliable ovarian stimulation protocol for marmosets is needed to enhance their use as a model for studying human and non-human primate oocyte biology. In this species, a standard dose of hCG did not effectively induce oocyte maturation in vivo. The objectives of this study were to characterize ovarian response to an FSH priming regimen in marmosets, given without or with a high dose of hCG, and to determine the meiotic and developmental competence of the oocytes isolated. Ovaries were removed from synchronized marmosets treated with FSH alone (50 IU/d for 6 d) or the same FSH treatment combined with a single injection of hCG (500 IU). Cumulus-oocyte complexes (COCs) were isolated from large (>1.5mm) and small (0.7-1.5mm) antral follicles. In vivo-matured oocytes were subsequently activated parthenogenetically or fertilized in vitro. Immature oocytes were subjected to in vitro maturation and then activated parthenogenetically. Treatment with FSH and hCG combined increased the number of expanded COCs from large antral follicles compared with FSH alone (23.5 +/- 9.3 versus 6.4 +/- 2.7, mean +/- S.E.M.). Approximately 90% of oocytes surrounded by expanded cumulus cells at the time of isolation were meiotically mature. A blastocyst formation rate of 47% was achieved following fertilization of in vivo-matured oocytes, whereas parthenogenetic activation failed to induce development to the blastocyst stage. The capacity of oocytes to complete meiosis in vitro and cleave was positively correlated with follicle diameter. A dramatic effect of follicle size on spindle formation was observed in oocytes that failed to complete meiosis in vitro. Using the combined FSH and hCG regimen described in this study, large numbers of in vivo matured marmoset oocytes could be reliably collected in a single cycle, making the marmoset a valuable model for studying oocyte maturation in human and non-human primates.  相似文献   

13.
14.
S.E. Wert  W.J. Larsen   《Tissue & cell》1990,22(6):827-851
Cumulus cells in the mammalian ovary are normally connected to each other and to their enclosed oocyte by an extensive network of gap junctions (GJs). We have shown that the loss of cumulus cell GJs is correlated temporally with meiotic resumption in the intact preovulatory rat follicle (Larsen et al., 1986). Here we describe morphological changes in GJ particle packing patterns (PPPs) that occur prior to GJ loss and meiotic resumption in hormonally stimulated rat cumulus-oocyte complexes (COCs). In the PMSG-primed rat, 89% of the cumulus cell GJ area detected by freeze-fracture electron microscopy consists of tightly packed junctional particles: 4% exhibit loose PPPs of randomly dispersed particles; and 7% contain a mixture of both tight and loose PPPs. One to 2 hr after stimulation with hCG, the area of GJs containing tight PPPs drops by 50%-60%, while junctions exhibiting loosely organized and mixed patterns increase concomitantly. These shifts in PPPs are accompanied by the appearance of unusual particle-free areas of puckered or ruffled nonjunctional membrane at the GJ periphery. Cumulus cell GJs from isolated COCs incubated in FSH-containing medium demonstrate a similar shift in PPPs prior to meiotic resumption. The appearance of fusing areas of particle-free nonjunctional membrane at the GJ periphery in vitro is correlated with GJ loss and is not seen in COCs treated with dihydrocytochalasin B to inhibit endocytotic removal of cumulus GJs. The structural and temporal nature of these morphological observations supports the hypothesis that interruption of junctional communication plays a role in meiotic maturation of the preovulatory oocyte.  相似文献   

15.
16.
In the ovarian follicle, anti-Müllerian hormone (Amh) mRNA is expressed in granulosa cells from primary to preovulatory stages but becomes restricted to cumulus cells following antrum formation. Anti-Müllerian hormone regulates follicle development by attenuating the effects of follicle stimulating hormone on follicle growth and inhibiting primordial follicle recruitment. To examine the role of the oocyte in regulating granulosa cell Amh expression in the mouse, isolated oocytes and granulosa cells were co-cultured and Amh mRNA levels were analysed by real-time RT-PCR. Expression in freshly isolated granulosa cells increased with preantral follicle development but was low in the cumulus and virtually absent in the mural granulosa cells of preovulatory follicles. When preantral granulosa cells were co-cultured with oocytes from early preantral, late preantral or preovulatory follicles, and when oocytes from preovulatory follicles were co-cultured with cumulus granulosa cells, Amh expression was increased at least 2-fold compared with granulosa cells cultured alone. With oocytes from preantral but not preovulatory follicles, this was a short-range effect only observed with granulosa cells in close apposition to oocytes. We conclude that stage-specific oocyte regulation of Amh expression may play a role in intra- and inter-follicular coordination of follicle development.  相似文献   

17.
18.
19.
小鼠排卵前后卵巢纤蛋白溶酶原激活因子活性的变化   总被引:3,自引:1,他引:2  
刘以训  冯强 《生理学报》1989,41(3):284-290
给幼龄小鼠注射PMSG刺激滤泡生长,随后注射hCG以诱发排卵。在激素处理的不同时间取出卵巢,制备卵巢匀浆液或从卵巢中分离颗粒细胞和卵丘-卵母细胞复合体,并做离体培养。样品中组织型(tPA)和尿激酶型(uPA)纤蛋白溶酶原激活因子经SDS-凝胶电泳分离,用纤蛋白铺盖技术测定。实验结果表明,注射hCG 8h后15%的受试动物排卵,而卵巢匀浆液和颗粒细胞中tPA和uPA活性分别也在hCG注射后4和8h达到高峰。排卵后酶活性下降。卵丘-卵母细胞复合体主要含tPA,注射hCG 12—24h达到高峰。上述资料证明,tPA和uPA都参入小鼠排卵过程。因为排出的卵子中仍含有大量tPA,卵细胞的tPA除参与排卵外,可能对排卵后的一些生理过程也起重要作用。  相似文献   

20.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号