首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute respiratory distress syndrome   总被引:10,自引:0,他引:10  
  相似文献   

2.
Acute respiratory distress syndrome (ARDS) can be associated with various disorders. Among these, coronavirus infection may cause life-threatening severe acute respiratory syndrome (SARS). In this review, we present animal models and techniques for the study of ARDS, and discuss the roles and possible mechanisms of various chemical factors, including nitric oxide (NO). Our early work revealed that cerebral compression elicits severe hemorrhagic pulmonary edema (PE), leading to central sympathetic activation that results in systemic vasoconstriction. The consequence of systemic vasoconstriction is volume and pressure loading in the pulmonary circulation. Vasodilators, but not oxidant radical scavengers, are effective in the prevention of centrogenic PE. In isolated perfused lung, exogenous and endogenous NO enhances lung injury following air embolism and ischemia/reperfusion. In contrast, NO synthase (NOS) inhibitors reverse such lung injury. Although NO is important in maintaining vasodilator tone, hypoxia-induced pulmonary vasoconstriction is accompanied by an increase instead of a decrease in NO release. In animal and isolated lung studies, endotoxin produces acute lung injury that is associated with increases in cytokines and inducible NOS mRNA expression, suggesting that NO is toxic to the lung in endotoxin shock. Recently, we reported several rare cases that indicate that ARDS in patients with Japanese B encephalitis, lymphangitis with breast cancer and fat embolism is caused by different mechanisms. Our early and recent studies on ARDS and PE may provide information for clinical practice and the understanding of the pathogenesis of SARS.  相似文献   

3.
4.
5.
A recently emerged novel influenza A (H1N1) virus continues to spread globally. The pandemic caused by this new H1N1 swine influenza virus presents an opportunity to analyze the evolutionary significance of the origin of the new strain of swine flu. Our study clearly suggests that strong purifying selection is responsible for the evolution of the novel influenza A (H1N1) virus among human. We observed that the 2009 viral sequences are evolutionarily widely different from the past few years’ sequences. Rather, the 2009 sequences are evolutionarily more similar to the most ancient sequence reported in the NCBI Influenza Virus Resource Database collected in 1918. Analysis of evolutionary rates also supports the view that all the genes in the pandemic strain of 2009 except NA and M genes are derived from triple reassorted swine viruses. Our study demonstrates the importance of using complete-genome approach as more sequences will become available to investigate the evolutionary origin of the 1918 influenza A (H1N1) swine flu strain and the possibility of future reassortment events.  相似文献   

6.
7.
The 2009 pandemic H1N1 (pH1N1), of apparent swine origin, may have evolved in pigs unnoticed because of insufficient surveillance. Consequently, the need for surveillance of influenza viruses circulating in pigs has received added attention. In this study we characterized H1N1 viruses isolated from Canadian pigs in 2009. Isolates from May 2009 were comprised of hemagglutinin and neuraminidase (NA) genes of classical SIV origin in combination with the North American triple-reassortant internal gene (TRIG) cassette, here termed contemporary SIV (conSIV) H1N1. These conSIV H1N1 viruses were contiguous with the North American αH1 cluster, which was distinct from the pH1N1 isolates that were antigenically more related to the γH1 cluster. After the initial isolation of pH1N1 from an Alberta pig farm in early May 2009, pH1N1 was found several times in Canadian pigs. These pH1N1 isolates were genetically and antigenically homogeneous. In addition, H1N1 viruses bearing seasonal human H1 and N1 genes together with the TRIG cassette and an NA encoding an oseltamivir-resistance marker were isolated from pigs. The NS gene of one of these seasonal human-like SIV (shSIV) H1N1 isolates was homologous to pH1N1 NS, implicating reassortment between the two strains. Antigenic cross-reactivity was observed between pH1N1 and conSIV but not with shSIV H1N1. In summary, although there was cocirculation of pH1N1 with conSIV and shSIV H1N1 in Canadian pigs after May 2009, there was no evidence supporting the presence of pH1N1 in pigs prior to May 2009. The possibility for further reassortants being generated exists and should be closely monitored.  相似文献   

8.
The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.  相似文献   

9.
Boni MF  Smith GJ  Holmes EC  Vijaykrishna D 《Gene》2012,494(2):242-245
Hao (2011) reported that the PB2 genes of three swine influenza A viruses were likely generated through homologous recombination between two closely related parental strains. However, we show that Hao's observation is an artifact of incorrect taxon sampling arising through the lack of an appropriate evolutionary context. Through rigorous phylogenetic analyses we explain the evolutionary origins of these stains and confirm the lack of any statistical support for intra-segmental recombination.  相似文献   

10.

Background

Inflammatory process results in lung injury that may lead to pulmonary fibrosis (PF). Here, we described PF in mice infected with H5N1 virus.

Methods

Eight-week-old BALB/c mice were inoculated intranasally with 1 × 101 MID50 of A/Chicken/Hebei/108/2002(H5N1) viruses. Lung injury/fibrosis was evaluated by observation of hydroxyproline concentrations, lung indexes, and histopathology on days 7, 14, and 30 postinoculation.

Results

H5N1-inoculated mice presented two stages of pulmonary disease over a 30-d period after infection. At acute stage, infected-mice showed typical diffuse pneumonia with inflammatory cellular infiltration, alveolar and interstitial edema and hemorrhage on day 7 postinoculation. At restoration stage, most infected-mice developed PF of different severities on day 30 postinoculation, and 18% of the survived mice underwent severe interstitial and intra-alveolar fibrosis with thickened alveolar walls, collapsed alveoli and large fibrotic areas. The dramatically elevated hydroxyproline levels in H5N1-infected mice showed deposition of collagen in lungs, and confirmed fibrosis of lungs. The dry lung-to-body weight ratio was significantly increased in infected group, which might be associated with the formation of PF in H5N1-infected mice.

Conclusion

Our findings show that H5N1-infected mice develop the typical PF during restoration period, which will contribute to the investigation of fibrogenesis and potential therapeutic intervention in human H5N1 disease.  相似文献   

11.
Fan X  Zhu H  Zhou B  Smith DK  Chen X  Lam TT  Poon LL  Peiris M  Guan Y 《Journal of virology》2012,86(4):2375-2378
The 2009 pandemic influenza virus (pdm/09) has been frequently introduced to pigs and has reassorted with other swine viruses. Recently, H3N2 reassortants with pdm/09-like internal genes were isolated in Guangxi and Hong Kong, China. Genetic and epidemiological analyses suggest that these viruses have circulated in swine for some time. This is the first evidence that swine reassortant viruses with pdm/09-like genes may have become established in the field, altering the landscape of human and swine influenza.  相似文献   

12.
13.
Highlights
1. Identification of a reassortant EA H1N1 SIV (SD/18) which isolated from a pig farm in Shandong, north China.
2. Phylogenetic analysis showed that SD/18 virus containing a complete internal gene cassette from pdm/09 virus.
3. The results of pathogenicity in mice showed that the mortality rate of SD/18 virus in mice could reach 100%.
4. The potential risk of EA lineage SIVs to humans is very high and we need to pay enough attention to the different reassortant EA H1N1 viruses.  相似文献   

14.
The aim of the work is the comparison of the epidemiology of influenza and acute respiratory virus infections(ARVI)in the Republic of Kazakhstan with the corresponding influenza epidemic in Russia induced by influenza pandemic virus A/California/07/2009 in 2009. Data on influenza and ARVI from the Republic of Kazakhstan and Federal Center of influenza was collected and investigated over the course of several weeks from hospitalized patients with the same diagnosis among all population and in age groups on 16 territories of Kazakhstan and in 49 major cities of Russia. The epidemic in Kazakhstan resembled the Russian epidemic in terms of its abnormally early beginning,expression of monoaetiology,the spread of the epidemic into all territories and start of the epidemics among adult population. High percentage of hospitalized people and lethal outcome were registered in this epidemic. Similarity of epidemic process character in corresponding border-line territories of both countries was found out.  相似文献   

15.
PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts-pigs, humans, or birds-remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs.  相似文献   

16.
Zhu J  Zou W  Jia G  Zhou H  Hu Y  Peng M  Chen H  Jin M 《Journal of Proteomics》2012,75(6):1732-1741
The H1N1/2009 influenza virus has the potential to cause a human pandemic, and sporadic cases of human-to-pig transmission have been reported. In this study, two influenza viruses were isolated from pigs. A phylogenetic analysis showed that the A/swine/NanChang/F9/2010(H1N1) (F9/10) strain shared a high degree of homology with the pandemic H1N1/2009 virus, and A/swine/GuangDong/34/2006 (H1N1) (34/06) strains was a classical swine influenza virus. A proteomic analysis was performed to investigate possible alterations of protein expression in porcine alveolar macrophage (PAM) cells infected by the F9/10 and 34/06 viruses over different time courses. Using 2-DE in association with MALDI-TOF MS/MS, we identified 13 up-regulated and 21 down-regulated protein spots, including cytoskeleton proteins, cellular signal transduction proteins, molecular biosynthesis proteins and heat shock proteins. The most significant changes in the infected cells were associated with molecular biosynthesis proteins and heat shock proteins. We analysed the biological characteristics of the F9/10 and 34/06 viruses in vivo and in vitro. The F9/10 virus showed greater pathogenicity than the 34/06 virus in PAM cells and mice. This study provides insights into the biologic characteristics, potential virulence alteration and cross-species transmission mechanisms of the pandemic H1N1/2009.  相似文献   

17.
18.
In 2013, three reassortant swine influenza viruses (SIVs)—two H1N2 and one H3N2—were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human‐like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human‐like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human‐lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human‐lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.  相似文献   

19.
正Dear Editor,Influenza A viruses cause pandemics at an interval of approximately 10–40 years,and pigs are regarded as a"mixing vessel"because they are easily infected with avian and human influenza viruses(Ito et al.,1998).According to previous studies,H3N2,H1N2,and H1N1  相似文献   

20.
The pandemic H1N1 virus of 2009 (2009 H1N1) produced a spectrum of disease ranging from mild illness to severe illness and death. Respiratory symptoms were frequently associated with virus infection, with relatively high rate of gastrointestinal symptoms reported. To better understand 2009 H1N1 virus pathogenesis in humans, we studied virus and host responses following infection of two cell types: polarized bronchial and pharyngeal epithelial cells, which exhibit many features of the human airway epithelium, and colon epithelial cells to serve as a human intestinal cell model. Selected 2009 H1N1 viruses were compared to both seasonal H1N1 and triple-reassortant swine H1N1 influenza viruses that have circulated among North American pigs since before the 2009 pandemic. All H1N1 viruses replicated productively in airway cells; however, in contrast to seasonal H1N1 virus infection, infection with the 2009 H1N1 and triple-reassortant swine H1N1 viruses resulted in an attenuated inflammatory response, a weaker interferon response, and reduced cell death. Additionally, the H1N1 viruses of swine origin replicated less efficiently at the temperature of the human proximal airways (33°C). We also observed that the 2009 H1N1 viruses replicated to significantly higher titers than seasonal H1N1 virus in polarized colon epithelial cells. These studies reveal that in comparison to seasonal influenza virus, H1N1 viruses of swine origin poorly activate multiple aspects of the human innate response, which may contribute to the virulence of these viruses. In addition, their less efficient replication at human upper airway temperatures has implications for the understanding of pandemic H1N1 virus adaptation to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号