首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genome synthesis endows scientists the ability of de novo creating genomes absent in nature, by thorough redesigning DNA sequences and introducing numerous custom features. However, the genome synthesis is a labor‐ and time‐consuming work, and thus it is a challenge to verify and quantify the synthetic genome rapidly and precisely. Thus, specific DNA sequences different from native genomic sequences are designed into synthetic genomes during synthesis, namely genomic markers. Genomic markers can be easily detected by PCR reaction, whole‐genome sequencing (WGS) and a variety of methods to identify the synthetic genome from native one. Here, we review types and applications of genomic markers utilized in synthetic genomes, with the hope of providing a guidance for future works.  相似文献   

3.
The density of information in a bacterial genome allows its history, organization and encoded functions to be distilled into a single graphical representation. These features have made it possible to discern the forces acting in and on bacterial genomes at levels not attainable in eukaryotes.  相似文献   

4.
Evolution of bacterial genomes   总被引:1,自引:0,他引:1  
This review examines evolution of bacterial genomes with an emphasis on RNA based life, the transition to functional DNA and small evolving genomes (possibly plasmids) that led to larger, functional bacterial genomes.  相似文献   

5.
Modification profiles of bacterial genomes   总被引:14,自引:9,他引:14       下载免费PDF全文
DNAs were prepared from twenty-six bacterial species and digested with a variety of restriction endonucleases to determine what modifications the DNAs carry. Several general conclusions could be made: 1) First, in no instance was the DNA of a restriction enzyme. 2) The specificity of the DNA modification was the same as that of its restriction counterpart; there were no cases of the DNAs being modified against a less specific class of restriction enzymes. 3) In most (but not all) cases, the resistance of a bacterium's DNA to its own restriction enzyme could be generalized to include resistance to all other restriction enzymes with the same specificity (isoschizomers). 4) DNA modified within the central tetramer of a recognition sequence is usually protected against cleavage by all related hexameric enzymes possessing that central tetramer. Only three families of DNA presented in this study disobey this rule. 5) Finally, a significant number of cases emerge where bacterial DNA carries a modification but no corresponding restriction endonuclease activity.  相似文献   

6.
Recognizing the pseudogenes in bacterial genomes   总被引:9,自引:0,他引:9  
Pseudogenes are now known to be a regular feature of bacterial genomes and are found in particularly high numbers within the genomes of recently emerged bacterial pathogens. As most pseudogenes are recognized by sequence alignments, we use newly available genomic sequences to identify the pseudogenes in 11 genomes from 4 bacterial genera, each of which contains at least 1 human pathogen. The numbers of pseudogenes range from 27 in Staphylococcus aureus MW2 to 337 in Yersinia pestis CO92 (e.g. 1–8% of the annotated genes in the genome). Most pseudogenes are formed by small frameshifting indels, but because stop codons are A + T-rich, the two low-G + C Gram-positive taxa (Streptococcus and Staphylococcus) have relatively high fractions of pseudogenes generated by nonsense mutations when compared with more G + C-rich genomes. Over half of the pseudogenes are produced from genes whose original functions were annotated as ‘hypothetical’ or ‘unknown’; however, several broadly distributed genes involved in nucleotide processing, repair or replication have become pseudogenes in one of the sequenced Vibrio vulnificus genomes. Although many of our comparisons involved closely related strains with broadly overlapping gene inventories, each genome contains a largely unique set of pseudogenes, suggesting that pseudogenes are formed and eliminated relatively rapidly from most bacterial genomes.  相似文献   

7.
The availability of sequenced bacterial genomes allows a deeper understanding of their organizational features that are related with fundamental cellular processes such as coordinated gene expression, chromosome replication and cell division. Nevertheless, recent genome comparisons and experimental work highlighted the fluidity of bacterial chromosomes, including genome rearrangements that imperil the selective features of chromosome order. As a result, the clash between elements generating rearrangements and chromosome organization is a classic case of evolutionary conflict.  相似文献   

8.
In the context of a general overview of molecular mechanisms of microbial evolution, several genetic systems known to either promote or restrain the generation of genetic variations are discussed. Particular attention is given to functions involved in DNA rearrangements and DNA acquisition. Sporadic actions by a variety of such systems influencing genetic stability in either way result in a level of genetic plasticity which is tolerable to the overall wealth of microbial populations but which allows for evolutionary change needed for a steady adaptation to variable selective forces. Although these evolutionarily relevant biological functions are encoded by the genome of each individual, their actions are exerted to some degree randomly in rare individuals and are therefore seemingly nondeterministic and become manifest at the population level.  相似文献   

9.

Background  

Across all sequenced bacterial genomes, the number of domains n c in different functional categories c scales as a power-law in the total number of domains n, i.e. , with exponents α c that vary across functional categories. Here we investigate the implications of these scaling laws for the evolution of domain-content in bacterial genomes and derive the simplest evolutionary model consistent with these scaling laws.  相似文献   

10.
11.
Fold assignments for newly sequenced genomes belong to the most important and interesting applications of the booming field of protein structure prediction. We present a brief survey and a discussion of such assignments completed to date, using as an example several fold assignment projects for proteins from the Escherichia coli genome. This review focuses on steps that are necessary to go beyond the simple assignment projects and into the development of tools extending our understanding of functions of proteins in newly sequenced genomes. This paper also discusses several problems seldom addressed in the literature, such as the problem of domain prediction and complementary predictions (e.g., transmembrane regions and flexible regions) and cross-correlation of predictions from different servers. The influence of sequence and structure database growth on prediction success is also addressed. Finally, we discuss the perspectives of the field in the context of massive sequence and structure determination projects, as well as the development of novel prediction methods.  相似文献   

12.
13.
Physical mapping of bacterial genomes.   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

14.
15.
Current human activities undoubtedly impact natural ecosystems. However, the influence of Homo sapiens on living organisms must have also occurred in the past. Certain genomic characteristics of prokaryotes can be used to study the impact of ancient human activities on microorganisms. By analyzing DNA sequence similarity features of transposable elements, dramatic genomic changes have been identified in bacteria that are associated with large and stable human communities, agriculture and animal domestication: three features unequivocally linked to the Neolithic revolution. It is hypothesized that bacteria specialized in human-associated niches underwent an intense transformation after the social and demographic changes that took place with the first Neolithic settlements. These genomic changes are absent in related species that are not specialized in humans.  相似文献   

16.
GenomeExplorer is a program for comparative analysis of regulation in prokaryotic genomes. The program has options for signal search, comparison of gene samples, search for paralogs and orthologs, iterative construction of signal profiles. The program has a convenient graphic interface, allowing for navigation in the annotation window, in the genome map, and in the table of gene similarities. The use of the system clipboard allows one to export the results of analysis into Word and Excel, and to call external programs via the Internet.  相似文献   

17.
The advent of genetic engineering-the ability to edit and insert DNA into living organisms-in the latter half of the 20th century created visions of a new era of synthetic biology, where novel biological functions could be designed and implemented for useful purposes. We are witnessing an exciting revolution of scale, wherein technical progresses allow for the manipulation of genetic material at the whole genome level. This will enable the manufacture of increasingly complex genetic designs to solve pressing challenges in health, energy and the environment-if and when such designs can be specified. We argue that the organized development of key common application organisms, engineered for engineerability, and attendant libraries of parts, pathways and standardized manufacturing are necessary for this genome-scale technology to realize its promise.  相似文献   

18.
19.
20.
Structural arrangement of bacterial cell walls   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号