首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
The planet is experiencing an ongoing global biodiversity crisis. Measuring the magnitude and rate of change more effectively requires access to organized, easily discoverable, and digitally-formatted biodiversity data, both legacy and new, from across the globe. Assembling this coherent digital representation of biodiversity requires the integration of data that have historically been analog, dispersed, and heterogeneous. The Integrated Publishing Toolkit (IPT) is a software package developed to support biodiversity dataset publication in a common format. The IPT’s two primary functions are to 1) encode existing species occurrence datasets and checklists, such as records from natural history collections or observations, in the Darwin Core standard to enhance interoperability of data, and 2) publish and archive data and metadata for broad use in a Darwin Core Archive, a set of files following a standard format. Here we discuss the key need for the IPT, how it has developed in response to community input, and how it continues to evolve to streamline and enhance the interoperability, discoverability, and mobilization of new data types beyond basic Darwin Core records. We close with a discussion how IPT has impacted the biodiversity research community, how it enhances data publishing in more traditional journal venues, along with new features implemented in the latest version of the IPT, and future plans for more enhancements.  相似文献   

2.
The biodiversity informatics community has discussed aspirations and approaches for assigning globally unique identifiers (GUIDs) to biocollections for nearly a decade. During that time, and despite misgivings, the de facto standard identifier has become the “Darwin Core Triplet”, which is a concatenation of values for institution code, collection code, and catalog number associated with biocollections material. Our aim is not to rehash the challenging discussions regarding which GUID system in theory best supports the biodiversity informatics use case of discovering and linking digital data across the Internet, but how well we can link those data together at this moment, utilizing the current identifier schemes that have already been deployed. We gathered Darwin Core Triplets from a subset of VertNet records, along with vertebrate records from GenBank and the Barcode of Life Data System, in order to determine how Darwin Core Triplets are deployed “in the wild”. We asked if those triplets follow the recommended structure and whether they provide an easy and unambiguous means to track from specimen records to genetic sequence records. We show that Darwin Core Triplets are often riddled with semantic and syntactic errors when deployed and curated in practice, despite specifications about how to construct them. Our results strongly suggest that Darwin Core Triplets that have not been carefully curated are not currently serving a useful role for relinking data. We briefly consider needed next steps to overcome current limitations.  相似文献   

3.
The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments.  相似文献   

4.
The Global Biodiversity Information Facility and the Genomic Standards Consortium convened a joint workshop at the University of Oxford, 27-29 February 2012, with a small group of experts from Europe, USA, China and Japan, to continue the alignment of the Darwin Core with the MIxS and related genomics standards. Several reference mappings were produced as well as test expressions of MIxS in RDF. The use and management of controlled vocabulary terms was considered in relation to both GBIF and the GSC, and tools for working with terms were reviewed. Extensions for publishing genomic biodiversity data to the GBIF network via a Darwin Core Archive were prototyped and work begun on preparing translations of the Darwin Core to Japanese and Chinese. Five genomic repositories were identified for engagement to begin the process of testing the publishing of genomic data to the GBIF network commencing with the SILVA rRNA database.  相似文献   

5.
6.
7.
The monitoring of species occurrences is a crucial aspect of biodiversity conservation, and regional volunteerism can serve as a powerful tool in such endeavors. The Fuji-Hakone-Izu National Park in the Hakone region of Kanagawa Prefecture, Japan, boasts a volunteer association of approximately 100 members. These volunteers have monitored plant species occurrences from 2001 to the present along several hiking trails in the region. In this paper, I present the annual observation records of plant occurrences in Hakone from 2001 to 2010. This data set includes 1,071 species of plants from 151 families. Scientific names follow the Y List, and this data set includes several threatened plant species. Data files are formatted based on the Darwin Core and Darwin Core Archives, which are defined by the Biodiversity Information Standards (BIS) or Biodiversity Information Standards Taxonomic Databases Working Group (TDWG). Data files filled on required and some additional item on Darwin Core. The data set can download from the author’s personal Web site as of July 2012. These data will soon be published for the Global Biodiversity Information Facility (GBIF) through GBIF Japan. All users can then access the data from the GBIF portal site.  相似文献   

8.
植物标本是分类学、生态学和分子生物学最重要的凭证之一。标本的采集和鉴定信息需清晰、准确、美观地展示和保存于标本标签中, 不能有歧义以及拼写错误。在标签的制作过程中, 数据输入的方式要简单、直接, 标签文件生成过程中最好能自动分析错误, 且在打印之前要便于修改和调整。本文探讨了打印植物标本标签的若干原则以及注意事项, 并介绍了用R语言编写的herblabel程序包生成植物标本标签以及鉴定标签的过程。herblabel程序包基于Darwin Core和CVH5.0数据交换标准, 可快速批量生成几种样式的RTF标签, 且标签简洁、美观, 易于编辑。herblabel程序包具有检查地点完整程度, 学名拼写和接受状态, 科、属在APG等新系统下的对应关系等功能, 可有效减少数据录入过程中产生的错误。此外, 本程序包在打印标签时使用的是基于Darwin Core标准保存的标本数据库, 不仅方便统计和管理, 也可以直接用于全球生物多样性信息网络(GBIF)数据共享或者数字植物标本馆的建设。该程序包可显著提高植物标本馆标本制作、管理和信息录入的工作效率, 减轻工作人员的负担, 并在植物生物多样性编目中发挥重要作用。  相似文献   

9.
Building on the planning efforts of the RCN4GSC project, a workshop was convened in San Diego to bring together experts from genomics and metagenomics, biodiversity, ecology, and bioinformatics with the charge to identify potential for positive interactions and progress, especially building on successes at establishing data standards by the GSC and by the biodiversity and ecological communities. Until recently, the contribution of microbial life to the biomass and biodiversity of the biosphere was largely overlooked (because it was resistant to systematic study). Now, emerging genomic and metagenomic tools are making investigation possible. Initial research findings suggest that major advances are in the offing. Although different research communities share some overlapping concepts and traditions, they differ significantly in sampling approaches, vocabularies and workflows. Likewise, their definitions of ‘fitness for use’ for data differ significantly, as this concept stems from the specific research questions of most importance in the different fields. Nevertheless, there is little doubt that there is much to be gained from greater coordination and integration. As a first step toward interoperability of the information systems used by the different communities, participants agreed to conduct a case study on two of the leading data standards from the two formerly disparate fields: (a) GSC’s standard checklists for genomics and metagenomics and (b) TDWG’s Darwin Core standard, used primarily in taxonomy and systematic biology.  相似文献   

10.
生物多样性数据集成模式初探   总被引:1,自引:0,他引:1  
本文以生物多样性研究发展现状的分析为基础,为生物多样性保护政策的制定提供可靠的数据支持为目标,通过对国内外几个著名的生物多样性数据库建设情况的分析,从相关学者的需求出发,提出了设计一个多层次多角度并带有一定人工智能的生物多样性集成数据库的构想。该系统基于都柏林核心(Dublin Core)的数据规范,并符合基于开放文献预研的元数据互操作协议(The Open Archixles Initiative Protocol for Metadata Hatvesting,OAIPMH)的标准,是一个集文字、图件、图片、声音、影像为一体的,能够在网上和硬件载体(如光盘)上同时进行发布的分布式数据库平台。其网上数据库系统的子系统之间以及子系统和硬件载体之间可以通过元数据获取的开放档案倡议协议互相交换数据。  相似文献   

11.
生物多样性信息学研究进展   总被引:4,自引:0,他引:4  
生物多样性信息学是一门蓬勃发展的新学科。它将现代的信息技术带入生物多样性及其相关学科的研究领域。它在生物多样性基础数据的数字化、模型工具和各种工具软件的开发、数据整合, 以及全球、地区和国家尺度生物多样性信息网络等多个方面的发展, 向我们展示了未来在全球范围内自由、免费共享生物多样性数据和信息, 以及人们行动起来共同关注、调查与监测野外生物多样性的前景。目前, 已有大量数字化的物种编目、标本馆标本、多媒体影像、研究文献等生物多样性基础信息可以通过互联网检索和利用。其中, 最值得关注的是一些成功的国际性研究项目, 如物种2000、全球生物多样性信息网络、生命条形码以及网络生命大百科全书。这些项目的成功不仅体现在对大量基础信息和数据的发布, 而且它们通过与生物多样性信息标准TDWG(Biodiversity Information Standards: TDWG)的合作, 推动了达尔文核心标准(Darwin Core)等一些重要的生物多样性信息标准的应用, 以及地区和国家性生物多样性信息节点的建立, 这些都为将来全球范围生物多样性信息的共享和数据交换奠定了重要基础。在数字化信息的基础上, 研究人员也开发了一些在特定研究领域应用的数据挖掘和模型工具, 例如基于数字化标本的地理分布预测工具MAXENT, 分类学专家知识管理的LifeDesk。公民科学理念的发展则向我们展示了公众和科学爱好者广泛参与以互联网为基础的生物多样性信息学研究活动。因此, 生物多样性信息学的发展前景广阔, 它将为我们实现全球保护战略目标, 应对生物多样性危机, 解决全球气候变化条件下生物多样性资源管理和利用建立坚实的信息基础。  相似文献   

12.
Biodiversity metadata provide service to query, management and use of actual data sets. The progress of the development of metadata standards in China was analyzed, and metadata required and/or produced based on the Convention on Biological Diversity were reviewed. A biodiversity metadata standard was developed based on the characteristics of biodiversity data and in line with the framework of international metadata standards. The content of biodiversity metadata is divided into two levels. The first level consists of metadata entities and elements that are necessary to exclusively identify a biodiversity data set, and is named as Core Metadata. The second level comprises metadata entities and elements that are necessary to describe all aspects of a biodiversity data set. The standard for core biodiversity metadata is presented in this paper, which is composed of 51 elements belonging to 6 categories (entities), i.e. inventory information, collection information, information on the content of the data set, management information, access information, and metadata management information. The name, definition, condition, data type, and field length of metadata elements in these six categories (entities) are also described.  相似文献   

13.
Information on the distribution of animal populations is essential for conservation planning and management. Unfortunately, shared coordinate-level data may have the potential to compromise sensitive species and generalized data are often shared instead to facilitate knowledge discovery and communication regarding species distributions. Sharing of generalized data is, unfortunately, often ad hoc and lacks scalable conventions that permit consistent sharing at larger scales and varying resolutions. One common convention in African applications is the Quarter Degree Grid Cells (QDGC) system. However, the current standard does not support unique references across the Equator and Prime Meridian. We present a method for extending QDGC nomenclature to support unique references at a continental scale for Africa. The extended QDGC provides an instrument for sharing generalized biodiversity data where laws, regulations or other formal considerations prevent or prohibit distribution of coordinate-level information. We recommend how the extended QDGC may be used as a standard, scalable solution for exchange of biodiversity information through development of tools for the conversion and presentation of multi-scale data at a variety of resolutions. In doing so, the extended QDGC represents an important alternative to existing approaches for generalized mapping and can help planners and researchers address conservation issues more efficiently.  相似文献   

14.
Understanding how species attain their geographical distributions and identifying traits correlated with range size are important objectives in biogeography, evolutionary biology and biodiversity conservation. Despite much effort, results have been varied and general trends have been slow to emerge. Studying species pools that occupy specific habitats, rather than clades or large groupings of species occupying diverse habitats, may better identify ranges size correlates and be more informative for conservation programmes in a rapidly changing world. We evaluated correlations between a set of organismal traits and range size in bird species from Amazonian white-sand ecosystems. We assessed if results are consistent when using different data sources for phylogenetic and range hypotheses. We found that dispersal ability, as measured by the hand-wing index, was correlated with range size in both white-sand birds and their non-white-sand sister taxa. White-sand birds had smaller ranges on average than their sister taxa. The results were similar and robust to the different data sources. Our results suggest that the patchiness of white-sand ecosystems limits species’ ability to reach new habitat islands and establish new populations.  相似文献   

15.
Modes of speciation and the neutral theory of biodiversity   总被引:5,自引:0,他引:5  
Hubbell's neutral theory of biodiversity has generated much debate over the need for niches to explain biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional equivalence of species in competition and dispersal. Almost no attention has been paid to another critical aspect of the theory, the assumptions on the nature of the speciation process. In the standard version of the neutral theory each individual has a fixed probability to speciate. Hence, the speciation rate of a species is directly proportional to its abundance in the metacommunity. We argue that this assumption is not realistic for most speciation modes because speciation is an emergent property of complex processes at larger spatial and temporal scales and, consequently, speciation rate can either increase or decrease with abundance. Accordingly, the assumption that speciation rate is independent of abundance (each species has a fixed probability to speciate) is a more natural starting point in a neutral theory of biodiversity. Here we present a neutral model based on this assumption and we confront this new model to 20 large data sets of tree communities, expecting the new model to fit the data better than Hubbell's original model. We find, however, that the data sets are much better fitted by Hubbell's original model. This implies that species abundance data can discriminate between different modes of speciation, or, stated otherwise, that the mode of speciation has a large impact on the species abundance distribution. Our model analysis points out new ways to study how biodiversity patterns are shaped by the interplay between evolutionary processes (speciation, extinction) and ecological processes (competition, dispersal).  相似文献   

16.
人类活动导致全球范围内生物多样性丧失日趋严重。物种多样性是研究最为深入以及最贴近生物多样性管理的层次。物种多样性的研究往往受到多时空尺度生态过程的影响, 传统物种多样性调查方法受到人力物力影响, 局限性大, 物种多样性的研究与管理亟需整合不同来源的数据。遥感技术从传统的光学遥感阶段发展到不同平台、不同维度相结合的多源遥感阶段, 并逐渐进入以高空间分辨率和高光谱为特征、以激光雷达为前沿发展方向的综合遥感阶段。遥感技术因为其监测范围广、能监测人迹罕至地区以及长期可重复等特性, 为研究不同时空尺度的生态学科学问题提供了更新更优的研究手段。本文围绕种群动态、种间关系与群落多样性、功能属性及功能多样性以及生物多样性保护管理等生物多样性研究热点问题, 系统地论述了航空航天遥感技术在物种多样性研究与保护领域的应用, 总结了航空航天遥感技术在研究与物种多样性有关的主要生态学问题中的机遇与挑战。我们认为航空航天遥感技术利用多光谱甚至高光谱与激光技术从空中监测物种多样性, 从不同视角、基于不同光源提供了物种多样性不同侧面的信息, 能够减小地面调查强度, 在大范围和边远地区的物种多样性调查研究中有着至关重要的作用。依据光谱特性的物种判别以及依据激光雷达的三维结构量测将促进生物多样性的研究与管理, 加强遥感学家和生物多样性研究者的沟通交流将有助于促进不同时空尺度的生物多样性与遥感技术的结合。  相似文献   

17.
Setting the absolute tempo of biodiversity dynamics   总被引:1,自引:0,他引:1  
Neutral biodiversity theory has the potential to contribute to our understanding of how macroevolutionary dynamics influence contemporary biodiversity, but there are issues regarding its dynamical predictions that must first be resolved. Here we address these issues by extending the theory in two ways using a novel analytical approach: (1) we set the absolute tempo of biodiversity dynamics by explicitly incorporating population-level stochasticity in abundance; (2) we allow new species to arise with more than one individual. Setting the absolute tempo yields quantitative predictions on biodiversity dynamics that can be tested using contemporary and fossil data. Allowing incipient-species abundances greater than one individual yields predictions on how these dynamics, and the form of the species-abundance distribution, are affected by multiple speciation modes. We apply this new model to contemporary and fossil data that encompass 30 Myr of macroevolution for planktonic foraminifera. By synthesizing the model with these empirical data, we present evidence that dynamical issues with neutral biodiversity theory may be resolved by incorporating the effects of environmental stochasticity and incipient-species abundance on biodiversity dynamics.  相似文献   

18.
The current global challenges that threaten biodiversity are immense and rapidly growing. These biodiversity challenges demand approaches that meld bioinformatics, large-scale phylogeny reconstruction, use of digitized specimen data, and complex post-tree analyses (e.g. niche modeling, niche diversification, and other ecological analyses). Recent developments in phylogenetics coupled with emerging cyberinfrastructure and new data sources provide unparalleled opportunities for mobilizing and integrating massive amounts of biological data, driving the discovery of complex patterns and new hypotheses for further study. These developments are not trivial in that biodiversity data on the global scale now being collected and analyzed are inherently complex. The ongoing integration and maturation of biodiversity tools discussed here is transforming biodiversity science, enabling what we broadly term “next-generation” investigations in systematics, ecology, and evolution (i.e., “biodiversity science”). New training that integrates domain knowledge in biodiversity and data science skills is also needed to accelerate research in these areas. Integrative biodiversity science is crucial to the future of global biodiversity. We cannot simply react to continued threats to biodiversity, but via the use of an integrative, multifaceted, big data approach, researchers can now make biodiversity projections to provide crucial data not only for scientists, but also for the public, land managers, policy makers, urban planners, and agriculture.  相似文献   

19.
Research on the various components of biodiversity has and will produce large quantities of heterogeneous and distributed data that need to be integrated and characterized in a unified way to reveal their full potential. Over the last thirty years the trait-based, functional approach to biodiversity has undergone an extraordinary expansion and has been key to advances in many fields of natural science. To represent, exploit and share the tremendous amount of data the biodiversity community has to acquire data standards, which should reflect the perception of this community. A first step toward this goal is to define the set of concepts that form the basis of this particular domain of knowledge, thereby developing a thesaurus for plant functional diversity research. Such concepts can be represented by a controlled list of preferred terms that are identified by the thesaurus' developers. Such a thesaurus will serve as a stable reference of standards for integration purposes, specifically when published in RDF language, a Semantic Web standard, and in addition available as linked data on the web. Here we present Thesauform—Traits, a web based tool dedicated to the collaborative construction of a thesaurus by experts in the field of plant functional diversity research. Thesauform—Traits fully exploits the key principle of the semantic web to facilitate both the thesaurus construction with SKOS and the interaction with Dublin Core and FOAF. It has been successfully used by a group of 15 experts to annotate and validate a set of definitions for more than 150 plant traits. ThesauFom—Traits will be made available as an open source product and will allow scientific communities of all fields to develop thesauri for their specific domain.  相似文献   

20.
Recent years have seen an exponential increase in the amount of data available in all sciences and application domains. Macroecology is part of this “Big Data” trend, with a strong rise in the volume of data that we are using for our research. Here, we summarize the most recent developments in macroecology in the age of Big Data that were presented at the 2018 annual meeting of the Specialist Group Macroecology of the Ecological Society of Germany, Austria and Switzerland (GfÖ). Supported by computational advances, macroecology has been a rapidly developing field over recent years. Our meeting highlighted important avenues for further progress in terms of standardized data collection, data integration, method development and process integration. In particular, we focus on (a) important data gaps and new initiatives to close them, for example through space- and airborne sensors, (b) how various data sources and types can be integrated, (c) how uncertainty can be assessed in data-driven analyses and (d) how Big Data and machine learning approaches have opened new ways of investigating processes rather than simply describing patterns. We discuss how Big Data opens up new opportunities, but also poses new challenges to macroecological research. In the future, it will be essential to carefully assess data quality, the reproducibility of data compilation and analytical methods, and the communication of uncertainties. Major progress in the field will depend on the definition of data standards and workflows for macroecology, such that scientific quality and integrity are guaranteed, and collaboration in research projects is made easier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号