首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: BACKGROUND: Oenococcus oeni, a member of the lactic acid bacteria, is one of a limited number of microorganisms that not only survive, but actively proliferate in wine. It is is also unusual as, unlike the majority of bacteria present in wine, it is beneficial to wine quality rather than causing spoilage. These benefits are realised primarily through catalysing malolactic fermentation, but also through imparting other positive sensory properties. However, many of these industrially-important secondary attributes have been shown to be strain-dependent and their genetic basis it yet to be determined. RESULTS: In order to investigate the scale and scope of genetic variation in O. oeni, we have performed whole-genome sequencing on eleven strains of this bacterium, bringing the total number of strains for which genome sequences are available to fourteen. While any single strain of O. oeni was shown to contain around 1800 protein-coding genes, in-depth comparative annotation based on genomic synteny and protein orthology identified over 2800 orthologous open reading frames that comprise the pan genome of this species, and less than 1200 genes that make up the conserved genomic core present in all of the strains. The expansion of the pan genome relative to the coding potential of individual strains was shown to be due to the varied presence and location of multiple distinct bacteriophage sequences and also in various metabolic functions with potential impacts on the industrial performance of this species, including cell wall exopolysaccharide biosynthesis, sugar transport and utilisation and amino acid biosynthesis. CONCLUSIONS: By providing a large cohort of sequenced strains, this study provides a broad insight into the genetic variation present within O. oeni. This data is vital to understanding and harnessing the phenotypic variation present in this economically-important species.  相似文献   

2.
Oenococcus oeni is an acidophilic member of the Leuconostoc branch of lactic acid bacteria indigenous to wine and similar environments. O. oeni is commonly responsible for the malolactic fermentation in wine and due to its positive contribution is frequently used as a starter culture to promote malolactic fermentation. In collaboration with the Lactic Acid Bacteria Genome Consortium the genome sequence of O. oeni PSU-1 has been determined. The complete genome is 1,780,517 nt with a GC content of 38%. 1701 ORFs could be predicted from the sequence of which 75% were functionally classified. Consistent with its classification as an obligately heterofermentative lactic acid bacterium the PSU-1 genome encodes all the enzymes for the phosphoketolase pathway. Moreover, genes related to flavor modification in wine, such as malolactic fermentation capacity and citrate utilization were readily identified. The completion of the O. oeni genome marks a significant new phase for wine-related research on lactic acid bacteria in which the physiology, genetic diversity and performance of O. oeni starter cultures can be more rigorously examined.  相似文献   

3.
The intraspecific genetic diversity of Oenococcus oeni, the key organism in the malolactic fermentation of wine, has been evaluated by random amplified polymorphic DNA (RAPD), ribotyping, small-plasmid content, and sequencing of RAPD markers with widespread distribution among the strains. Collection strains representing the diversity of this species have been studied together with some new isolates, many of which were obtained from wines produced by spontaneous malolactic fermentation. The RAPD profiles were strain specific and discerned two main groups of strains coincident with clusters obtained by macrorestriction typing in a previous work. Ribotyping and the conservation of RAPD markers indicates that O. oeni is a relatively homogeneous species. Furthermore, identical DNA sequences of some RAPD markers among strains representative of the most divergent RAPD clusters indicates that O. oeni is indeed a phylogenetically tight group, probably corresponding to a single clone, or clonal line of descent, specialized to grow in the wine environment and universally spread.  相似文献   

4.
Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR   总被引:5,自引:0,他引:5  
AIMS: To develop a real-time polymerase chain reaction (PCR) method for rapid detection and quantification of Oenococcus oeni in wine samples for monitoring malolactic fermentation. METHODS AND RESULTS: Specific primers and fluorogenic probe targeted to the gene encoding the malolactic enzyme of O. oeni were developed and used in real-time PCR assays in order to quantify genomic DNA either from bacterial pure cultures or wine samples. Conventional CFU countings were also performed. The PCR assay confirmed to be specific for O. oeni species and significantly correlated to the conventional plating method both in pure cultures and wine samples (r = 0.902 and 0.96, respectively). CONCLUSIONS: The DNA extraction from wine and the real-time PCR quantification assay, being performed in ca 6 h and allowing several samples to be concurrently processed, provide useful tools for the rapid and direct detection of O. oeni in wine without the necessity for sample plating. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid quantification of O. oeni by a real-time PCR assay can improve the control of malolactic fermentation in wines allowing prompt corrective measures to regulate the bacterial growth.  相似文献   

5.
AIMS: The goal of this study was to examine the growth of Oenococcus oeni in the presence of phenolic compounds under wine conditions and to see how these compounds affect bacterial metabolism. METHODS AND RESULTS: Phenolic compounds have been added to a basal medium that simulates the composition of wine. Fifty milligrams per litre or more of phenolic compounds stimulated bacterial growth. Oenococcus oeni seemed to use citric acid and trehalose, if they were present, before glucose and fructose. Citrate was completely exhausted in three days and the yield of acetate was higher when phenolic compounds were present. CONCLUSIONS: Phenolic compounds reduced the rate of sugar consumption and enhanced citric acid consumption, increasing the yield of acetic acid. SIGNIFICANCE AND IMPACT OF THE STUDY: This study allows a better knowledge of co-metabolism of citric acid and sugars by O. oeni in the presence of phenolic compounds of wine.  相似文献   

6.
葡萄酒生境对乳酸菌代谢的影响   总被引:1,自引:0,他引:1  
在葡萄酒酿造中,为了提高其稳定性及质量,经常利用乳酸菌进行苹果酸.乳酸发酵.苹果酸一乳酸发酵一般自发进行,也可以接种乳酸菌.本文从酿酒酵母与乳酸菌的交互作用及酚类物质和酿酒工艺对乳酸菌的作用等方面进行了综述,讨论了葡萄酒生态环境对乳酸菌代谢的影响,为苹果酸一乳酸发酵的有效控制提供一些参考.  相似文献   

7.
The wine bacterium Oenococcus oeni has to cope with harsh environmental conditions, including an acidic pH, a high alcoholic content, nonoptimal growth temperatures, and growth-inhibitory compounds such as fatty acids, phenolic acids, and tannins. We describe the characterization and cloning of the O. oeni ftsH gene, encoding a protease belonging to the ATP binding cassette protein superfamily. The O. oeni FtsH protein is closest in sequence similarity to the FtsH homologue of Lactococcus lactis. The O. oeni ftsH gene proved to be stress-responsive, since its expression increased at high temperatures or under osmotic shock. O. oeni FtsH protein function was tested in an Escherichia coli ftsH mutant strain, and consistent with the O. oeni ftsH gene expression pattern, the O. oeni FtsH protein provided protection for the E. coli ftsH mutant against heat shock. O. oeni and Bradyrhizobium japonicum FtsH proteins also triggered E. coli resistance to wine toxicity. Genes homologous to O. oeni ftsH were detected in many other lactic acid bacteria found in wine, suggesting that this type of gene constitutes a well-conserved stress-protective molecular device.  相似文献   

8.
Control over malolactic fermentation (MLF) is a difficult goal in winemaking and needs rapid methods to monitor Oenococcus oeni malolactic starters (MLS) in a stressful environment such as wine. In this study, we describe a novel quantitative PCR (QPCR) assay enabling the detection of an O. oeni strain during MLF without culturing. O. oeni strain LB221 was used as a model to develop a strain-specific sequence-characterized amplified region (SCAR) marker derived from a discriminatory OPA20-based randomly amplified polymorphic DNA (RAPD) band. The 5' and 3' flanking regions and the copy number of the SCAR marker were characterized using inverse PCR and Southern blotting, respectively. Primer pairs targeting the SCAR sequence enabled strain-specific detection without cross amplification of other O. oeni strains or wine species of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeasts. The SCAR-QPCR assay was linear over a range of cell concentrations (7 log units) and detected as few as 2.2 × 10(2) CFU per ml of red wine with good quantification effectiveness, as shown by the correlation of QPCR and plate counting results. Therefore, the cultivation-independent monitoring of a single O. oeni strain in wine based on a SCAR marker represents a rapid and effective strain-specific approach. This strategy can be adopted to develop easy and rapid detection techniques for monitoring the implantation of inoculated O. oeni MLS on the indigenous LAB population, reducing the risk of unsuccessful MLF.  相似文献   

9.
Arginine metabolism by wine lactic acid bacteria (LAB) may lead to wine quality degradation. While arginine is essential for growth of the wine relevant LAB Oenococcus oeni , it remains unclear whether it also stimulates its growth. This study evaluated the effect of arginine and citrulline, the partially metabolized intermediate of the arginine deiminase pathway, on the growth of two commercial O. oeni strains in comparison with a Lactobacillus buchneri strain in wine and at wine pH values. Neither arginine nor citrulline increased growth of both O. oeni strains in comparison with the L. buchneri strain. However, arginine and citrulline were partially degraded in all incubations. The extent of citrulline degradation correlated with lower pH values in oenococcal cultivations but with higher pH values in those of the L. buchneri strain. The degradation kinetics of O. oeni and L. buchneri for malic acid and arginine differed and the latter grew in sterile filtered post-malolactic fermentation wine. This study shows that arginine and citrulline did not stimulate growth of the two O. oeni strains studied, and that their physiological role differed among the wine LAB considered. While arginine may play a role in wine microbiological stability, other nutrients should be investigated for their suitability to create a selective ecological advantage for O. oeni strains in wine.  相似文献   

10.
酒酒球菌(Oenococcus oeni)胁迫适应性反应机制   总被引:1,自引:0,他引:1  
赵文英  李华  王华 《微生物学报》2008,48(4):556-561
苹果酸-乳酸发酵有利于提高葡萄酒品质,为了获得高活性的直投式酒酒球菌发酵制剂,从生理和分子生物学的角度理解该菌种胁迫耐受性增强的机制是必要的.本文就酒酒球菌利用苹果酸-乳酸发酵和膜结合的H -F0F1-ATP酶以维持细胞内环境的稳定和能量供给;胁迫适应过程中细胞膜组分的调整;小热休克蛋白Lo18等胁迫蛋白及其相应的基因的表达和调控等方面进行了综述.胁迫适应性反应机制的研究对发酵剂菌株的筛选、发酵剂的制备及其他工程菌株的构建具有重要意义.  相似文献   

11.
12.
Oenococcus oeni is an alcohol-tolerant, acidophilic lactic acid bacterium that plays an important role in the elaboration of wine. It is often added as a starter culture to carry out malolactic conversion. Given the economic importance of this reaction, the taxonomic structure of this species has been studied in detail. In the present work, phenotypic and molecular approaches were used to identify 121 lactic acid bacteria strains isolated from the wines of three winemaking regions of Portugal. The strains were differentiated at the genomic level by M13-PCR fingerprinting. Twenty-seven genomic clusters represented by two or more isolates and 21 single-member clusters, based on an 85% similarity level, were recognized by hierarchic numerical analysis. M13-PCR fingerprinting patterns revealed a high level of intraspecific genomic diversity in O. oeni. Moreover, this diversity could be partitioned according to the geographical origin of the isolates. Thus, M13-PCR fingerprint analysis may be an appropriate methodology to study the O. oeni ecology of wine during malolactic fermentation as well as to trace new malolactic starter cultures and evaluate their dominance over the native microbiota.  相似文献   

13.
Aims:  To study the effect of ethanol on Oenococcus oeni activity at the single cell level.
Methods and Results:  The active extrusion of the fluorescent probe carboxy fluorescein (cF) was used to assess the metabolic activity of ethanol-stressed O. oeni cells. Subsequent flow cytometric analysis revealed that O. oeni cells extrude the accumulated cF upon energizing with l -malic acid. However, O. oeni cells exposed to 12% (v/v) ethanol for 1 h showed a decreased capacity for active extrusion of cF. Moreover, two subpopulations could be distinguished, one of which being able to extrude cF and the other one remaining cF fluorescent. Growing cells in the presence of 8% (v/v) ethanol resulted in robust cells that maintained the capacity to actively extrude cF after being exposed to 12% (v/v) ethanol, which in turn correlated with the high levels of ATP observed in these ethanol stressed, malolactic fermentation (MLF) performing cells.
Conclusion:  From our results, it becomes evident that active extrusion of cF can be used to assess malolactic activity in O. oeni .
Significance and Impact of the Study:  The present study provides information for the development of a rapid method to assess the malolactic activity of individual O. oeni cells performing MLF during wine production.  相似文献   

14.
Aims:  To characterize the genetic and phenotypic diversity of 135 lactic acid bacteria (LAB) strains isolated from Italian wines that undergone spontaneous malolactic fermentation (MLF) and propose a multiphasic selection of new Oenococcus oeni malolactic starters.
Methods and Results:  One hundred and thirty-five LAB strains were isolated from 12 different wines. On the basis of 16S amplified ribosomal DNA restriction analysis (ARDRA) with three restriction enzymes and 16S rRNA gene sequencing, 120 O. oeni strains were identified. M13-based RAPD analysis was employed to investigate the molecular diversity of O. oeni population. Technological properties of different O. oeni genotypes were evaluated in synthetic medium at increasing selective pressure, such as low pH (3·5, 3·2 and 3·0) and high ethanol values (10, 11 and 13% v/v). Finally, the malolactic activity of one selected strain was assessed in wine by malolactic trial in winery.
Conclusions:  The research explores the genomic diversity of wine bacteria in Italian wines and characterizes their malolactic metabolism, providing an efficient strategy to select O. oeni strains with desirable malolactic performances and able to survive in conditions simulating the harsh wine environment.
Significance and Impact of the Study:  This article contributes to a better understanding of microbial diversity of O. oeni population in Italian wines and reports a framework to select new potentially O. oeni starters from Italian wines during MLF.  相似文献   

15.
16.
Alcoholic fermentation of synthetic must was performed using either Saccharomyces cerevisiae or a mutant Deltapep4, which is deleted for the proteinase A gene. Fermentation with the mutant Deltapep4 resulted in 61% lower levels of free amino acids, and in 62% lower peptide concentrations at the end of alcoholic fermentation than in the control. Qualitative differences in amino acid composition were observed. Changes observed in amino acids in peptides were mainly quantitative. After alcoholic fermentation, each medium was inoculated with Oenococcus oeni. Malolactic fermentation in the medium with the Deltapep4 strain took 10 days longer than the control. This difference may have been due to a difference in the nitrogen composition of the two media. Free amino acids and amino acids in peptides were poorly consumed by O. oeni. Thus, the qualitative aspects of nitrogen composition, which depend in part on yeast metabolism, may be a determinant for the optimal growth of O. oeni in wine.  相似文献   

17.
AIMS: The goal of this study was to develop a reproducible method for molecular typing strains of Oenococcus oeni, and also to apply it in the study of population dynamics of these strains during malolactic fermentation of wine. METHODS AND RESULTS: A new method of multiplex randomly amplified polymorphic DNA (RAPD)-PCR has been developed, based on the combination of one random 10-mer and one specific 23-mer oligonucleotide in a single PCR. This method generates unique and discriminant DNA profiles for strains of O. oeni. The strains of this species were also clearly distinguished from other species of lactic acid bacteria. The method was applied to study the dynamics of O. oeni strains during malolactic fermentation, in three vintages in the same cellar. CONCLUSIONS: A fast and reliable method for typing strains of O. oeni has been designed and optimized. It improves the reproducibility and rapidity of conventional RAPD-PCR, and it has been validated monitoring the population dynamics during malolactic fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This method will be a good tool to study the population dynamics of bacteria during malolactic fermentation and to evaluate the performance of new malolactic starter cultures and their dominance over the native microbiota.  相似文献   

18.
AIMS: To investigate the occurrence and extent of Saccharomyces cerevisiae and Oenococcus oeni interactions. METHODS AND RESULTS: Interactions between S. cerevisiae and O. oeni were investigated by double-layer and well-plate assays showing the occurrence of specific interactions for each yeast-malolactic bacteria (MLB) coupling. Heat and protease treatments of synthetic grape juice fermented by the S. cerevisiae strain F63 indicated that the inhibitory activity exerted by this yeast on O. oeni is due to a proteinaceous factor(s) which exerts either bacteriostatic or bactericidal effect depending on concentration and affects malolactic fermentation in natural grape juice and wine. CONCLUSIONS: A proteinaceous factor(s) produced by a S. cerevisiae wine strain able to inhibit O. oeni growth and malic acid fermentation was characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: The individuation, characterization and exploitation of yeast proteinaceous factor(s) exerting inhibitory activity on MLB may offer new opportunities for the management of malolactic fermentation.  相似文献   

19.
To identify specific marker sequences for the rapid identification of Oenococcus oeni, we sequenced the 23S-5S internal transcribed spacer (ITS-2) region and the 5S rDNA of five different O. oeni strains and three phylogenetically related lactic acid bacteria (LAB). Comparative analysis revealed 100% identity among the ITS-2 region of the O. oeni strains and remarkable differences in length and sequence compared to related LAB. These results enabled us to develop a primer set for a rapid PCR-identification of O. oeni within three hours. Moreover, the comparison of the 5S rDNA sequences and the highly conserved secondary structure provided the template for the design of three fluorescence-labeled specific oligonucleotides for fluorescence in situ hybridization (FISH). These probes are partial complementary to each other. This feature promotes the accessibility to the target sequence within the ribosome and enhances the fluorescence signal. For the rapid identification of Oenococci both the 5S rRNA gene and the ITS-2 region are useful targets.  相似文献   

20.
The wine bacterium Oenococcus oeni has to cope with harsh environmental conditions, including an acidic pH, a high alcoholic content, nonoptimal growth temperatures, and growth-inhibitory compounds such as fatty acids, phenolic acids, and tannins. We describe the characterization and cloning of the O. oeni ftsH gene, encoding a protease belonging to the ATP binding cassette protein superfamily. The O. oeni FtsH protein is closest in sequence similarity to the FtsH homologue of Lactococcus lactis. The O. oeni ftsH gene proved to be stress-responsive, since its expression increased at high temperatures or under osmotic shock. O. oeni FtsH protein function was tested in an Escherichia coli ftsH mutant strain, and consistent with the O. oeni ftsH gene expression pattern, the O. oeni FtsH protein provided protection for the E. coli ftsH mutant against heat shock. O. oeni and Bradyrhizobium japonicum FtsH proteins also triggered E. coli resistance to wine toxicity. Genes homologous to O. oeni ftsH were detected in many other lactic acid bacteria found in wine, suggesting that this type of gene constitutes a well-conserved stress-protective molecular device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号