首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 microg l(-1)) and ferric iron (20 and 40 mg l(-1)), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose-response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose-effect relationships and synergistic effects were not observed.  相似文献   

2.
The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 μg?l?1) and ferric iron (20 and 40 mg?l?1), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose–response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose–effect relationships and synergistic effects were not observed.  相似文献   

3.
The aim of this study was to evaluate the effects of organosulfurs, isothiocyanates and vitamin C towards hydrogen peroxide-induced DNA damage (DNA strand breaks and oxidized purines/pyrimidines) in human hepatoma cells (HepG2), using the Comet assay. Treatment with hydrogen peroxide (H(2)O(2)) increased the levels of DNA strand breaks and oxidized purine and pyrimidine bases, in a concentration and time dependent manner. Organosulfur compounds (OSCs) reduced DNA strand breaks induced by H(2)O(2). In addition, OSCs also decreased the levels of oxidized pyrimidines. However, none of the OSCs tested reduced the levels of oxidized purines. Isothiocyanates compounds (ITCs) and vitamin C showed protective effects towards H(2)O(2)-induced DNA strand breaks and oxidized purine and pyrimidine bases. The results indicate that removal of oxidized purine and pyrimidine bases by ITCs was more efficient than by OSCs and vitamin C. Our findings suggest that OSCs, ITCs and vitamin C could exert their protective effects towards H(2)O(2)-induced DNA strand breaks and oxidative DNA damage by the free radical-scavenging efficiency of these compounds.  相似文献   

4.
Studies have been made on cadmium accumulation in tissues of mussels kept within 20-60 days in water artificially enriched by Cd up to 20-100 micrograms/l. Irrespectively of cadmium concentration in the medium, its accumulation in tissues decreases in the following order: mid-gut gland, gills, gonads, mantle, adductor. Maximum concentration of Cd was found in the digestive tubuli of the mid-gut gland by X-ray microanalysis. The increase in S and, to a lower extent, P concentrations in these tubuli was also observed. It is suggested that the latter is due to immobilization of Cd by metal-binding proteins as well as to lyzosomal vesicles involved into detoxication of Cd. The increase in the external cadmium up to 100 micrograms/l did not affect the level of K, Ca and Mg in tissues of the mussel.  相似文献   

5.
To study possible genotoxic effects of occupational exposure to vanadium pentoxide, we determined DNA strand breaks (with alkaline comet assay), 8-hydroxy-2'deoxyguanosine (8-OHdG) and the frequency of sister chromatid exchange (SCE) in whole blood leukocytes or lymphocytes of 49 male workers employed in a vanadium factory in comparison to 12 non-exposed controls. In addition, vanadate has been tested in vitro to induce DNA strand breaks in whole blood cells, isolated lymphocytes and cultured human fibroblasts of healthy donors at concentrations comparable to the observed levels of vanadium in vivo. To investigate the impact of vanadate on the repair of damaged DNA, co-exposure to UV or bleomycin was used in fibroblasts, and DNA migration in the alkaline and neutral comet assay was determined. Although, exposed workers showed a significant vanadium uptake (serum: median 5.38microg/l, range 2.18-46.35microg/l) no increase in cytogenetic effects or oxidative DNA damage in leukocytes could be demonstrated. This was consistent with the observation that in vitro exposure of whole blood leukocytes and lymphocytes to vanadate caused no significant changes in DNA strand breaks below concentrations of 1microM (50microg/l). In contrast, vanadate clearly induced DNA fragmentation in cultured fibroblasts at relevant concentrations. Combined exposure of fibroblasts to vanadate/UV or vanadate/bleomycin resulted in non-repairable DNA double strand breaks (DSBs) as seen in the neutral comet assay. We conclude that exposure of human fibroblasts to vanadate effectively causes DNA strand breaks, and co-exposure of cells to other genotoxic agents may result in persistent DNA damage.  相似文献   

6.
1-Nitropyrene and its chemically synthesised derivatives were investigated for their cytotoxicity and ability to induce DNA-strand breaks in Chinese hamster lung fibroblasts. Both 1-nitrosopyrene (0.25-60 micrograms/ml) and 1-aminopyrene (0.25-25 micrograms/ml) were cytotoxic, and induced the formation of DNA lesions, which were measured as DNA single-strand breaks after sedimentation in alkaline sucrose-density gradients. Higher doses of 1-aminopyrene (25-60 micrograms/ml) inhibited the formation of DNA single-strand breaks. 1-Nitropyrene was not toxic (0.25-60 micrograms/ml) and induced low levels of detectable DNA strand breaks, whilst N-acetyl-1-aminopyrene was inactive. The post-mitochondrial supernatant fraction of Aroclor-induced rat-liver containing 4 mM NADPH (S9 mix) did not promote the activation of 1-nitropyrene. In fact DNA strand breaks induced by either 1-nitropyrene or 1-nitrosopyrene was abolished in the presence of S9 mix. The 1-nitropyrene reduced intermediate, N-hydroxy-1-aminopyrene was synthesised by the reduction of 1-nitrosopyrene with ascorbic acid. In the presence of ascorbic acid, 1-nitrosopyrene caused a 5-fold increase in the number of DNA single-strand breaks when compared to cells treated with 1-nitrosopyrene alone. The results are discussed in terms of the metabolic activation of 1-nitropyrene and 1-aminopyrene in Chinese hamster lung cells.  相似文献   

7.
The formation and persistence of DNA adducts in liver, intestinal mucosa, gills and brain of juvenile northern pike (Esox lucius) following oral exposure to benzo[a]pyrene (BaP), benzo[k]fluoranthene (BkF) and 7H-dibenzo[c,g]carbazol (DBC) were analysed by 32P-postlabelling. The dosage was 25 micromol/kg body weight of each substance, administered on 5 occasions with an interval of 12-14 days. Sampling was carried out 9 days after the second treatment, and 9, 16, 33 and 78 days after the fifth treatment. Pikes were also fed with the substances singly for comparison of adduct patterns. A complex pattern of adducts was detected in all examined tissues from fish treated with the mixture. Total adduct levels were highest in intestine (347+/-17.4 nmol adducts/mol nucleotides, mean+/-SE), followed by liver (110+/-9.3), gills (69+/-6) and brain (14+/-4.2). In pike treated with BaP alone, one major adduct was detected in all examined tissues. This BaP-adduct made up approximately 50% of the total amount of adducts in the brain. Corresponding values in liver, intestine and gills were 23, 31 and 34%, respectively. One relatively weak BkF-adduct and at least 10 different DBC-adducts were detected in all analysed tissues. Total adduct level in the intestine declined to 29.4% of the maximum value 78 days after the last exposure, while there was no significant decline in adduct levels in liver, gills or brain. The results suggest that intestine is more susceptible to adduct formation than liver after oral exposure, and that adduct levels in the intestine represent ongoing or relatively recent exposure. DNA adducts in the other investigated tissues were much more persistent and may therefore accumulate during long-term exposure.  相似文献   

8.
Temperature affects growth rate in aquatic organisms. This can be evaluated in short term using biochemical indexes (RNA/DNA and Protein/DNA). The effect of acclimatization temperature on the instantaneous growth and physiological condition of Perna viridis was studied in organisms collected in La Esmeralda, Sucre State (Venezuela) and taken to the laboratory, where groups of 100 organisms (size 3.0 - 3.5 cm, anteroposterior measurement) were acclimatized at 15, 20, 26 or 28 degrees C during four weeks. Later they were kept in a 60 liters aquarium for another six weeks under the same conditions. Each week, ten organisms per group were extracted to measure concentrations of RNA, DNA (by a fluorometric method with ethidium bromide) and proteins (by a colorimetric method), in tissues (digestive gland, adductor muscle and gills). Protein concentration was greater and highly significant at 15 degrees C for all studied tissues. The opposite was obtained with the RNA/DNA and Protein/DNA ratios: the greatest increase was observed at the highest temperature (28 degrees C) for all tissues. At the lowest temperature there was a tendency to reduce both indexes with time. Greater instantaneous growth can be expected at higher temperatures and 28 degrees C was optimal for growth in these specimens.  相似文献   

9.
Cultured human fibroblasts from healthy donors were incubated for 30 min with nine different benzo[a]pyrene (BP) derivatives in the presence or absence of liver microsomes from 3-methylcholanthrene treated rats. The induction and repair of DNA strand breaks were analysed by alkaline unwinding and separation of double and single stranded DNA (SS-DNA) by hydroxylapatite chromatography immediately after the incubation or at various times after the treatment. In the absence of microsomes DNA stand breaks were detected in fibroblasts exposed to 30 microM of each of the six BP phenols (1-, 2-, 3-, 7-, 9- or 11-OH-BP) and the three BP dihydrodiols (BP-4,5-, BP-7,8- or BP-9,10-dihydrodiol). After removal of the BP derivatives from the medium the DNA strand breaks disappeared within 24 h. alpha-Naphthoflavone (alpha-NF) caused a decrease in the induction of strand breaks by 1-, 3- and 9-OH-BP but did not affect the induction of strand breaks in cells exposed to BP-7,8-dihydrodiol. In the presence of microsomes DNA strand breaks were found after exposure to 30 microM of each of the six BP phenols (1-, 2-, 3-, 7-, 9- or 11-OH-BP), as well as BP-7,8- and 9,10-dihydrodiol. In contrast BP-4,5-dihydrodiol did not induce strand breaks under these conditions. The induction of strand breaks by BP-7,8-dihydrodiol was enhanced in the presence of cytosine-1-beta-D-arabinofuranoside (AraC). In all cases the DNA strand breaks had disappeared 24 h after removal of the BP derivatives and microsomes except after treatment with BP-7,8-dihydrodiol.  相似文献   

10.
Four tissues from the blue mussel, Mytilus edulis L., were examined for the presence of nuclear metallothionein (MT), and the nuclear:cytosolic (N:C) MT ratios and nuclear MT:DNA ratios investigated. Gill, digestive gland, gonad and posterior adductor muscle tissues were dissected, homogenized and subjected to differential centrifugation in order to isolate the nuclear and cytosolic fractions, which were then analyzed for MT and DNA. MT was present in all samples of the nuclear fractions from all four tissues. The nuclear MT concentration was either lower or the same as the cytosolic MT concentration from the same tissue. The mean N:C MT ratio of the digestive gland was significantly lower than that of the gill. The mean nuclear MT:DNA ratio of the digestive gland was significantly higher than that of the gill and posterior adductor muscle. In addition to being the first report of nuclear MT in bivalves, we showed that N:C MT ratios and nuclear MT:DNA ratios differ among tissues of the same organism. This raises important questions concerning the regulation of nuclear MT concentrations and the role of nuclear MT in metal regulation and DNA protection.  相似文献   

11.
Oysters display a diversity of uptake mechanisms for metallic elements and distribution in the target organs, namely gills and the digestive gland. Various tissues of the flat oyster, Ostrea edulis, were studied following experimental exposure to 0.025 m (5 g l) of mercury, for up to 34 days. All animals survived the treatment. Data indicate Hg accumulation in gill tissue with a maximum concentration of 38.76 g g dry weight after 25 days of exposure. Hg levels were lower in remaining tissues, in which the maximum concentration (18.47 mg g-1 dry weight) was reached after 18 days of exposure. After these times, concentration in both tissues decreased. Results show that oysters can accumulate Hg from the environment, without their survival being affected during the experimental period. Structural alteration of epithelial tissues of gill and digestive gland of flat oyster was comparable with effects described for other metallic elements in bivalve molluscs. Interstitial tissue was disorganized in the digestive gland, and ultrastructural changes in intracellular endomembranes were detected in epithelial cells of the digestive gland after 18 days of treatment. After 25 days, absorptive epithelial cells of gills showed highly dilated, swollen microvilli. These intracellular alterations are parameters of the incipient response to the accumulation of mercury.  相似文献   

12.
Mussels Perna perna were exposed to air for 24 h showing a clear increase in the levels of lipid peroxidation and oxidative DNA damage, measured as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). The levels of lipid peroxidation increased both in the digestive gland and gills, while oxidative DNA damage increased only in the gills. After the 24 h of air exposure, mussels were re-submersed for a period of 3 h, leading values to return to a pre-aerial exposure levels. Control animals were kept immersed during the whole period. Several antioxidant and complementary enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), glutathione S-transferase (GST) and the levels of total glutathione (Total GSH) were assayed in a second set of experiments where one group of mussels were exposed to air for 18 h and other to 1 h re-submersion after 18 h aerial exposure. Only a 52% increase in the glutathione S-transferase activity was observed in the digestive gland, which remained elevated to about 40% after 1 h re-submersion, showing that defense systems can be modulated even during oxygen deprivation in P. perna. The DNA and lipid oxidative damage observed after aerial exposure indicates that mussels face an oxidative challenge, and are able to counteract such an “insult” as values of lipid peroxidation and DNA damage returned to control values after 3 h re-submersion.  相似文献   

13.

Background

When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks.

Results

The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity.

Conclusions

This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.
  相似文献   

14.
DNA strand breaks induced in human CCRF-CEM cells by electrophilic chemicals (carcinogens/mutagens) can be readily quantitated via a facile alkaline unwinding assay. This procedure estimates the number of chemically induced DNA strand breaks on the basis of the percentage DNA converted from double-stranded to single-stranded form during an exposure to the alkaline unwinding conditions. The assay is based on the assumption that each strand break serves as a strand unwinding point during the alkaline denaturation. The extent of strand separation can be standardized with respect to the initial level of induced strand breaks by the use of X-rays, which produce known levels of DNA strand breaks per rad in mammalian cells. Subsequent to the alkaline exposure, the single- and double-stranded DNA were separated by use of thermostated hydroxylapatite columns (60 degrees C), and the DNA was quantitated via a fluorescence assay (Hoechst 33258 compound). A correlation was shown between mammalian DNA strand-breaking potential (as measured in this procedure) and the propensity of these chemicals to revert Salmonella typhimurium TA100.  相似文献   

15.
DNA strand damage in isolated male germ cells (MGC) was evaluated after in vitro exposure to bleomycin (BLM), a known genotoxin. The alkaline elution technique was used to determine DNA-strand breaks. Concentration-dependent strand damage was established following exposure to bleomycin for 1 h at 37 degrees C. Exposure at 0 degrees C resulted in an increase in the frequency of strand breaks as compared to those observed at 37 degrees C. Pretreatment of cells with deferoxamine (DM), an iron-selective chelating agent, abolished the DNA damage induced by bleomycin. Isolated male germ cells responded in a predictable and reproducible manner thus supporting their use in mechanistic studies of genotoxicity.  相似文献   

16.
The comet assay is a widely used biomonitoring tool for DNA damage. The most commonly used cells in human studies are lymphocytes. There is an urgent need to find an alternative target human cell that can be collected from normal subjects with minimal invasion. There are some reports of buccal cells, collected easily from the inside of the mouth, being used in studies of DNA damage and repair, and these were of interest. However, our preliminary studies following the published protocol showed that buccal cells sustained massive damage and disintegrated at the high pH [O. Ostling, K.J. Johanson. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123 (1984) 291-298] used, but that at lower pH were extremely resistant to lysis, an essential step in the comet assay. Therefore, the aims of this study were to develop a protocol than enabled buccal cell lysis and DNA damage testing in the comet assay, and to use the model to evaluate the potential use of the buccal cell model in human biomonitoring and nutritional study. Specifically, we aimed to investigate intra- and inter-individual differences in buccal cell DNA damage (as strand breaks), the effect of in vitro exposure to both a standard oxidant challenge and antioxidant treatment, as well as in situ exposure to an antioxidant-rich beverage and supplementation-related effects using a carotenoid-rich food. Successful lysis was achieved using 0.25% trypsin for 30 min followed by proteinase K (1mg/ml) treatment for 60 min. When this procedure was performed on cells pre-embedded in agarose on a microscope slide, followed by electrophoresis (in 0.01 M NaOH, 1mM EDTA, pH 9.1, 18 min at 12 V), a satisfactory comet image was obtained, though inter-individual variation was quite wide. Pre-lysis exposure of cells to a standard oxidant challenge (induced by H2O2) increased DNA strand breaks in a dose related manner, and incubation of cells in Trolox (a water soluble Vitamin E analogue) conferred significant protection (P<0.05) against subsequent oxidant challenge. Exposure of buccal cell in situ (i.e. in the mouth) to antioxidant-rich green tea led to an acute decrease in basal DNA strand breaks. In a controlled human intervention trial, buccal cells from 14 subjects after 28 days' supplementation with a carotenoid-rich berry (Fructus barbarum L.) showed a small but statistically significant (P<0.05) decrease in DNA strand breaks. These data indicate that this buccal cell comet assay is a feasible and potentially useful alternative tool to the usual lymphocyte model in human biomonitoring and nutritional work.  相似文献   

17.
The objective of this work was to evaluate the effects of selenomethionine (SeMet) on the induction, repair, and persistence of DNA damage in human leukocytes challenged with bleomycin (BLM). Comet assay was used to determine DNA strand breaks and hOGG1 for the specific recognition of oxidative damage. Leukocytes were (A) stimulated with phytohemagglutinin, (B) damaged with BLM, and (C) incubated to allow DNA repair. Comet assay was performed after each phase. SeMet (50 μM) was supplemented either during phase A, B, or C, or AB, or ABC. Treatment with SeMet decreased BLM-induced stand breaks when added during phase AB. Results obtained after the repair period indicate that SeMet favors repair of DNA damage especially when applied during phase AB. The comparison between DNA damage before and after repair showed that BLM-induced damage was repaired better in the presence of SeMet. Our results showed antigenotoxic effect of SeMet on BLM-induced DNA and also on repair and persistence of this damage when applied before and simultaneously with BLM.  相似文献   

18.
We evaluated the effects of short-term exposure to an organophosphate pesticide chlorpyrifos on the digestive gland and gills of the mussel Mytilus galloprovincialis. We studied metabolic activity by quantifying protein content and physiological function responses using acid DNase activity. The increase in protein content was observed in both the target tissues of mussels exposed to 0.03 μg/L chlorpyrifos when compared with control mussels. The pattern of acid DNase activity in digestive gland and gills indicated a tissue-specific response, although the lowest concentration of chlorpyrifos caused changes in acid DNase activity in both tissues. In the digestive gland, the increase of acid DNase activity was observed in mussel exposed to 0.03 μg/L chlorpyrifos, followed by decrease up to 100 μg/L chlorpyrifos. Enzyme activity in the gills showed a dose response effect. The results support the use of acid DNase activity in the digestive gland as a sensitive response to an environmentally relevant range of pesticide concentrations. It may also indicate an effect on mussel physiological status.  相似文献   

19.
1. The effects of heavy metals on lipid peroxidation in the gills and digestive gland of mussels exposed for six days to Cu2+, Cd2+ or Zn2+ (40 μg/l/animal) were investigated.2. In the tissues of Cu-exposed mussels a significant increase of the level of malondialdehyde (MDA), which is indicative of the peroxidative process, and a decrease of the concentration of glutathione were observed.3. Moreover, in the digestive gland of mussels, copper exposure results in an increase of other carbonyl compounds and in the lysosomal accumulation of lipofuscin granules.4. The exposure of mussels to Zn or to Cd did not elicit any of the above effects.5. The results are discussed in relation to the possible role that Cu-induced lysosomal lipofuscin accumulation may play in heavy metal detoxification.  相似文献   

20.
Survival as well as repair of DNA strand breaks were studied in CHO cells after exposure to internal beta-rays from incorporated [3H]thymidine at 4 degrees C (equivalent to an exposure at 'infinitely high' dose rate) and at 37 degrees C (low dose rate). DNA strand breaks were determined by the alkaline unwinding technique. In cells exposed at 4 degrees C cell killing was five times higher (Do = 250 decays per cell) than in cells exposed at 37 degrees C (Do = 1280 decays per cell). Strand breaks induced by 3H decay at 37 degrees C were repaired with the same kinetics as those generated at 4 degrees C. Therefore the different degrees of cell killing at 4 degrees C and 37 degrees C cannot be attributed to a difference in the repair kinetics for DNA strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号