首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hyperhomocysteinemia (HHcy) has been shown to induce endothelial dysfunction in part as a result of enhanced oxidative stress. Function and survival of endothelial progenitor cells (EPCs, defined as sca1(+) c-kit(+) flk-1(+) bone marrow-derived cells), which significantly contribute to neovascularization and endothelial regeneration, depend on controlled production of reactive oxygen species (ROS). Mice heterozygous for the gene deletion of methylenetetrahydrofolate reductase (Mthfr(+/-)) have a 1.5- to 2-fold elevation in plasma homocysteine. This mild HHcy significantly reduced the number of circulating EPCs as well as their differentiation. Mthfr deficiency was also associated with increased ROS production and reduced nitric oxide (NO) generation in Mthfr(+/-) EPCs. Treatment of EPCs with sepiapterin, a precursor of tetrahydrobiopterin (BH(4)), a cofactor of endothelial nitric oxide synthase (eNOS), significantly reduced ROS and improved NO production. mRNA and protein expression of eNOS and the relative amount of eNOS dimer compared with monomer were decreased by Mthfr deficiency. Impaired differentiation of EPCs induced by Mthfr deficiency correlated with increased senescence, decreased telomere length, and reduced expression of SIRT1. Addition of sepiapterin maintained cell senescence and SIRT1 expression at levels comparable to the wild type. Taken together, these results demonstrate that Mthfr deficiency impairs EPC formation and increases EPC senescence by eNOS uncoupling and downregulation of SIRT1.  相似文献   

2.
This study was conducted to investigate the effects of aging and long-term dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized (Ovx) SAMP8 mice. The female SAMP8 mice were divided into four groups (in each group n = 6), Ovx or sham operated at the age of 2 months, and fed with 0.2% antler containing diet or control diet from the age of 2.5 months. The samples were collected at the age of 3, 6, 9, 12, and 15 months, respectively, for physicochemical analyses, biochemical analyses, and the determination of hormones by radioimmunoassay. The results showed that plasma calcium (Ca) concentrations were maintained in a narrow range in all groups throughout the whole experimental period. With aging and/or ovariectomy, plasma parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25-(OH)2-D3) levels increased, and plasma phosphorus (P) and calcitonin (CT) levels decreased, and the femoral bone densities and Ca contents increased during the earlier stage, and then decreased gradually in all groups. Plasma PTH and 1,25-(OH)2-D3 levels in the Ovx mice were significantly higher than those in the intact mice, and plasma P concentrations, plasma CT levels, femoral bone densities, and femoral Ca contents in the Ovx mice were significantly lower than those in the intact mice. In addition, the decreases of plasma P levels, plasma CT levels, femoral bone densities, and femoral Ca contents, and the increases of plasma PTH levels were moderated by antler administration in both Ovx and intact mice. However, there was no effect of the dietary antler supplementation on the plasma 1,25-(OH)2-D3 levels in the female mice. It is concluded that prolonged dietary antler supplementation has important positive effects on bone loss with age and/ or ovarian function deficiency.  相似文献   

3.
4.
This work describes a novel epilepsy model, combining pentylenetetrazole (PTZ) kindling with the senescence-accelerated mouse P8 (SAMP8) a model for aging. The 2- and 8-month-old SAMP8 mice were treated with PTZ, phenobarbital plus PTZ or saline every 48 h during a period of 40 days. Both 2- and 8-month-old PTZ-kindled mice showed a behavioral pattern that was very similar to severe chronic epilepsy with secondary generalized seizures. Two out of six 8-month-old animals died in the PTZ group. Interestingly, atypical absence seizures were limited to the 8-month-old PTZ group. Furthermore, 8-month-old mice were more sensitive to the sedative effect of phenobarbital. The concentrations of several amino acids were examined by HPLC. Lower levels of amino acids were found in the 8-month-old compared to the 2-month-old control animals. No biochemical changes were observed between the groups of 2-month-old animals, while in the 8-month-old animals both treatment groups showed significantly higher concentrations of GABA, glutamine and glutathione. Thus, it could be shown that cerebral metabolism of 8-month-old SAMP8 mice was more sensitive to PTZ and phenobarbital than metabolism of 2-month-old mice. Furthermore, it is suggested that glutamate metabolism in brains of 8-month-old SAMP8 mice is altered and that excessive glutamate is transformed, in considerable amounts, into glutamate related metabolites, possibly in astrocytes.  相似文献   

5.
The steroid hormone, oestradiol, has pleiotropic functions. The protective effects of oestradiol are attributed to its anti‐inflammatory, antioxidant, anti‐atherogenic, anti‐apoptotic, vasodilatory activities and regulation of micro RNA. Oestradiol upregulates endothelial nitric oxide synthase gene expression and increases the production of nitric oxide, an important vasodilator. It suppresses the renin–angiotensin system and monitors haemodynamic stress. The hormone maintains the integrity of blood vessels by reducing oxidative stress while upregulating the expression of antioxidant enzymes and prevents vascular inflammation by regulating pro‐ and anti‐inflammatory cytokines. Aneurysmal subarachnoid haemorrhage (aSAH) occurring as a consequence of the rupture of an intracranial aneurysm is a devastating cerebrovascular event, representing 5–7% of all strokes. Postmenopausal women are more susceptible to aSAH compared to men in the same age group. This gender disparity has been attributed to reduced levels of the vascular protective hormone oestradiol following menopause. This review is focused on the protective role of oestradiol on vasculature and how the drop in oestradiol levels after menopause dramatically increases the incidence of aSAH in women. During menopause, oestradiol deficiency may affect vascular integrity causing dysregulation of vascular homeostasis by affecting the renin–angiotensin–aldosterone system (RAAS) and inflammatory and apoptotic cascades, resulting in the weakening of the cerebral arterial wall and potentially to development of an aneurysm and its rupture. In view of the role of oestradiol in maintaining vascular integrity, treatments involving hormone replacement could be a promising approach in postmenopausal women who are at risk of developing or rupturing an intracranial aneurysm.  相似文献   

6.
Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial creatine kinase, lactate dehydrogenase B, and dihydropyrimidinase-like protein 2 in process associated with learning and memory of SAMP8 mice.  相似文献   

7.
The senescence-accelerated mouse prone 8 (SAMP8) strain exhibits age-related learning and memory deficits (LMD) at 2 months of age. Combined linkage analysis of 264 F2 intercross SAMP8 × JF1 mice and RNA-seq analysis identified Hcn1 gene out of 29 genes in the LMD region on chromosome 13. Hcn1 in SAMP8 strain showed 15 times less polyglutamine repetition compared to Japanese fancy mouse 1 (JF1). Whole cell patch clamp analysis showed that Hcn1 ion conductivity was significantly lower in SAMP8 compared to that of JF1, which may be associated with learning and memory deficiency.  相似文献   

8.
Senescence represents a stage in life associated with elevated incidence of morbidity and increased risk of mortality due to the accumulation of molecular alterations and tissue dysfunction, promoting a decrease in the organism''s protective systems. Thus, aging presents molecular and biological hallmarks, which include chronic inflammation, epigenetic alterations, neuronal dysfunction, and worsening of physical status. In this context, we explored the AAV9‐mediated expression of the two main isoforms of the aging‐protective factor Klotho (KL) as a strategy to prevent these general age‐related features using the senescence‐accelerated mouse prone 8 (SAMP8) model. Both secreted and transmembrane KL isoforms improved cognitive performance, physical state parameters, and different molecular variables associated with aging. Epigenetic landscape was recovered for the analyzed global markers DNA methylation (5‐mC), hydroxymethylation (5‐hmC), and restoration occurred in the acetylation levels of H3 and H4. Gene expression of pro‐ and anti‐inflammatory mediators in central nervous system such as TNF‐α and IL‐10, respectively, had improved levels, which were comparable to the senescence‐accelerated‐mouse resistant 1 (SAMR1) healthy control. Additionally, this improvement in neuroinflammation was supported by changes in the histological markers Iba1, GFAP, and SA β‐gal. Furthermore, bone tissue structural variables, especially altered during senescence, recovered in SAMP8 mice to SAMR1 control values after treatment with both KL isoforms. This work presents evidence of the beneficial pleiotropic role of Klotho as an anti‐aging therapy as well as new specific functions of the KL isoforms for the epigenetic regulation and aged bone structure alteration in an aging mouse model.  相似文献   

9.
Recently, a new experimental model of epilepsy was introduced by the authors [Neurochem. Int. 40 (2002) 413]. This model combines pentylenetetrazole (PTZ)-kindling in senescence-accelerated mice P8 (SAMP8), a genetic model of aging. Since imbalance of glutamate and GABA is a major cause of seizures, the study of glial–neuronal interactions is of primary importance. Nuclear magnetic resonance spectroscopy (NMRS) is an excellent tool for metabolic studies. Thus, we examined whether NMRS when combined with administration of [1-13C]glucose and [1,2-13C]acetate might give valuable insights into neurotransmitter metabolism in this new model of epilepsy and aging. The 2- and 8-month-old SAMP8 were kindled with PTZ alone, received PTZ and phenobarbital (PB), or served as controls. In older animals, PTZ-kindling decreased labeling in glutamate C-4 from [1-13C]glucose, whereas, in the younger mice, labeling in glutamine C-4 was decreased both from [1-13C]glucose and [1,2-13C]acetate. It could be concluded that PTZ-kindling affected astrocytes in younger and glutamatergic neurons in older animals. In the presence of PTZ, phenobarbital decreased labeling of most metabolites in all cell types, except GABAergic neurons, from both labeled precursors in the younger animals. However, in older animals only GABAergic neurons were affected by phenobarbital as indicated by an increase in GABA labeling.  相似文献   

10.
Endothelial nitric oxide synthase (eNOS) plays a crucial role in endothelial cell functions. SIRT1, a NAD+-dependent deacetylase, is shown to regulate endothelial function and hence any alteration in endothelial SIRT1 will affect normal vascular physiology. Cigarette smoke (CS)-mediated oxidative stress is implicated in endothelial dysfunction. However, the role of SIRT1 in regulation of eNOS by CS and oxidants are not known. We hypothesized that CS-mediated oxidative stress downregulates SIRT1 leading to acetylation of eNOS which results in reduced nitric oxide (NO)-mediated signaling and endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) and H2O2 showed decreased SIRT1 levels, activity, but increased phosphorylation concomitant with increased eNOS acetylation. Pre-treatment of endothelial cells with resveratrol significantly attenuated the CSE- and oxidant-mediated SIRT1 levels and eNOS acetylation. These findings suggest that CS- and oxidant-mediated reduction of SIRT1 is associated with acetylation of eNOS which have implications in endothelial dysfunction.  相似文献   

11.
Lymphocyte recruitment to intestinal tissues depends on β(7) integrins. In this study, we studied disease severity and lymphocyte recruitment into the small intestine in SAMP1/YitFc mice, which develop chronic ileitis with similarity to human Crohn's disease. To assess the role of β(7) integrins in chronic ileitis, we generated SAMP1/YitFc lacking β(7) integrins (SAMP1/YitFc Itgb7(-/-)) using a congenic strain developed via marker-assisted selection. We analyzed ileal inflammation in SAMP1/YitFc and SAMP1/YitFc Itgb7(-/-) mice by histopathology and the distribution of T and B lymphocytes in the mesenteric lymph nodes (MLNs) by flow cytometry. Short-term (18 h) adoptive transfer experiments were used to study the in vivo homing capacity of T and B lymphocytes. In both young (<20 wk) and old (20-50 wk) SAMP1/YitFc Itgb7(-/-) mice, ileitis was reduced by 30-50% compared with SAMP1/YitFc mice. SAMP1/YitFc Itgb7(-/-) mice showed a dramatic 67% reduction in the size of their MLNs, which was caused by a 85% reduction in lymphocyte numbers and reduced short-term B cell homing. Flow cytometric analysis revealed a highly significant decrease in the percentage of B cells in MLNs of SAMP1/YitFc Itgb7(-/-) mice. Cotransfer of SAMP1/YitFc MLN B cells but not SAMP1/YitFc Itgb7(-/-) MLN B cells along with CD4(+) T cells resulted in exacerbated ileitis severity in SCID mice. Our findings suggest that β(7) integrins play an essential role in spontaneous chronic ileitis in vivo by promoting homing of disease-exacerbating B cells to MLNs and other intestinal tissues.  相似文献   

12.
Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)‐induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF‐α‐induced cellular senescence in EPCs, as indicated by reduced senescence‐associated β‐galactosidase activity and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked TNF‐α‐induced superoxide levels, NADPH oxidase activity, and microRNA‐21 (miR‐21) and p16INK4a synthesis. Kallistatin prevented TNF‐α‐mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR‐34a synthesis, whereas miR‐34a overexpression abolished kallistatin‐induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR‐34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ‐induced aortic senescence, oxidative stress, and miR‐34a and miR‐21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild‐type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR‐34 or sir‐2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR‐34, but stimulated sir‐2.1 and sod‐3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR‐34a‐SIRT1 pathway.  相似文献   

13.
The effect of aging on the status of macrominerals and trace elements in tissues was studied using two strains (SAMP1 and SAMR1) of senescence accelerated mouse. Two-month-old, 6-mo-old, and 10-mo-old female SAMP1 and SAMR1 mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, phosphorus, sulfur, sodium, and potassium concentrations in blood, liver, kidney, brain, and tibia of the mice were determined. The copper concentration in the brain was significantly increased with age in SAMP1 and SAMR1. In addition, the brain copper levels in SAMP1 were significantly higher than that in SAMR1 at respective ages. The calcium concentration in the kidney was significantly increased with age, but the copper and phosphorus concentrations significantly decreased with age in SAMP1 and SAMR1. In the liver of SAMR1, all minerals measured in this study except for sodium and potassium were significantly decreased with age. In addition, all mineral concentrations in the liver of 2-mo-old mice in SAMR1 except for copper and sodium were markedly higher than those in SAMP1 of the same age. These results suggest that the genetic factor is related to the age-associated mineral changes in tissues.  相似文献   

14.
Alzheimer’s disease (AD) is a common neurodegenerative disorders, in which oxidative stress plays an important role. The present study investigated the effect of eicosapentaenoic acid-enriched phospholipids (EPA-enriched PL) from the sea cucumber Cucumaria frondosa on oxidative injury in PC12 cells induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BHP). We also studied the effect of EPA-enriched PL on learning and memory functions in senescence-accelerated prone mouse strain 8 (SAMP8) in vivo. Pretreatment with EPA-enriched PL resulted in an enhancement of survival in a dose-dependent manner in H2O2 or t-BHP damaged PC12 cells. EPA-enriched PL pretreatment could also reduce the leakage of lactate dehydrogenase (LDH), and increase the intracellular total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity compared with the H2O2 or t-BHP group. The down-regulated Bcl-2 mRNA level and up-regulated Bax, Caspase-9, and Caspase-3 mRNA expression induced by H2O2 or t-BHP could be restored by EPA-enriched PL pretreatment. These results demonstrated that EPA-enriched PL exhibited its neuroprotective effects by virtue of its antioxidant activity, which might be achieved by inhibiting the mitochondria-dependent apoptotic pathway. The neuroprotective effect of EPA-enriched PL was also verified in vivo test: the EPA-enriched PL administration prevented the development of learning and memory impairments in SAMP8 mice. Our results indicated that EPA-enriched PL could offer an efficient and novel strategy to explore novel drugs or functional food for neuronprotection and cognitive improvement.  相似文献   

15.
Neuronal atrophy is a common pathological feature occurred in aging and neurodegenerative diseases. A variety of abnormalities including motor protein malfunction and mitochondrial dysfunction contribute to the loss of neuronal architecture; however, less is known about the intracellular signaling pathways that can protect against or delay this pathogenic process. Here, we show that the DYNC1I1 deficiency, a neuron-specific dynein intermediate chain, causes neuronal atrophy in primary hippocampal neurons. With this cellular model, we are able to find that activation of RAS-RAF-MEK signaling protects against neuronal atrophy induced by DYNC1I1 deficiency, which relies on MEK-dependent autophagy in neuron. Moreover, we further reveal that BRAF also protects against neuronal atrophy induced by mitochondrial impairment. These findings demonstrate protective roles of the RAS-RAF-MEK axis against neuronal atrophy, and imply a new therapeutic target for clinical intervention.  相似文献   

16.
Aging is associated with marked deficiency in circulating IGF‐1, which has been shown to contribute to age‐related cognitive decline. Impairment of moment‐to‐moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age‐related cognitive impairment. To establish the link between IGF‐1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF‐1 deficiency (Igf1f/f‐TBG‐Cre‐AAV8) and accelerated vascular aging. We found that IGF‐1‐deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal‐dependent spatial memory test, mimicking the aging phenotype. IGF‐1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF‐1 deficiency also impaired glutamate‐mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF‐1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment.  相似文献   

17.
18.
Sirtuins are NAD+‐dependent deacetylases that regulate a range of cellular processes. Although diverse functions of sirtuins have been proposed, those functions of SIRT6 and SIRT7 that are mediated by their interacting proteins remain elusive. In the present study, we identified SIRT6‐ and SIRT7‐interacting proteins, and compared their interactomes to investigate functional links. Our interactomes revealed 136 interacting proteins for SIRT6 and 233 for SIRT7 while confirming seven and 111 proteins identified previously for SIRT6 and SIRT7, respectively. Comparison of SIRT6 and SIRT7 interactomes under the same experimental conditions disclosed 111 shared proteins, implying related functional links. The interaction networks of interactomes indicated biological processes associated with DNA repair, chromatin assembly, and aging. Interactions of two highly acetylated proteins, nucleophosmin (NPM1) and nucleolin, with SIRT6 and SIRT7 were confirmed by co‐immunoprecipitation. NPM1 was found to be deacetylated by both SIRT6 and SIRT7. In senescent cells, the acetylation level of NPM1 was increased in conjunction with decreased levels of SIRT6 and SIRT7, suggesting that the acetylation of NPM1 could be regulated by SIRT6 and SIRT7 in the aging process. Our comparative interactomic study of SIRT6 and SIRT7 implies important functional links to aging by their associations with interacting proteins. All MS data have been deposited in the ProteomeXchange with identifiers PXD000159 and PXD000850 ( http://proteomecentral.proteomexchange.org/dataset/PXD000159 , http://proteomecentral.proteomexchange.org/dataset/PXD000850 ).  相似文献   

19.
Despite the evidence suggesting that mouse pyruvate kinase (PK) deficiency provides protection against malaria in rodents, there has been no investigation of a parallel protective effect against babesiosis caused by Babesia rodhaini. Here, we examined whether a PK-deficient co-isogenic mouse strain (CBA-Pk-1slc) was protected against B. rodhaini infection. We demonstrated that deficiency in pyruvate kinase correlated with a significant protective effect, with survival rates of 50%, 58% and 56% in groups inoculated with 10, 103 and 105 parasitized erythrocytes, respectively. In contrast, control CBA (CBA-Pk-1+) mice exhibited 100% lethality, regardless of the infectious dose. In addition, CBA-Pk-1slc mice showed decreased levels of parasitemia when compared to CBA-Pk-1+ mice, in groups given 10, 103 or 105 parasitized erythrocytes. These results indicate that similar to PK deficiency in rodents, PK deficiency in mice affects the in vivo growth of B. rodhaini and protects the mice from lethal babesiosis.  相似文献   

20.
Age-related changes in systolic blood pressure were assessed, using the senescence-accelerated mouse (SAM) model for aging research with strains SAMR1, SAMP1, and SAMP8. Each of the strains manifested a characteristic change in blood pressure with age. The SAMR1 strain, with normal aging, did not have chronologic changes from 2 to 27 months of age. The SAMP1 strain, with accelerated senescence, had a significant increase in blood pressure with age, and some (8 of 39) mice manifested hypertensive vascular disease characterized by high blood pressure, cardiac hypertrophy, and arteriolar fibrinoid necrosis at 11 to 14 months of age. The gradual increase in blood pressure after 8 to 10 months was considered to be preceded by progressive renal changes, from glomerulonephritis to contraction of the kidney, suggesting that the high blood pressure in the SAMP1 strain was of renal origin. Blood pressure in the SAMP8 strain, with age-related deficits in learning and memory, gradually decreased after 5 to 7 months of age, and was suggested to be due to the astrogliotic changes in response to spongiform degeneration in the medulla oblongata at 11 to 14 and 15 to 18 months of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号