首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite increased neurogenic differentiation markers in the hippocampal CA1 in Alzheimer disease, neurons are not replaced in CA1 and the neocortex in the disease. beta-Amyloid (Abeta) might cause deterioration of the brain microenvironment supporting neurogenesis and the survival of immature neurons. To test this possibility, we examined whether Abeta alters the expression of cell fate determinants in cerebral cortical cultures and in an Alzheimer disease mouse model (PrP-APP(SW)). Up-regulation of Mash1 and down-regulation of Olig2 were found in cerebral cortical cultures treated with Abeta-(1-42). Mash1 was expressed in nestin-positive immature cells. The majority of Mash1-positive cells in untreated cortical culture co-expressed Olig2. Abeta increased the proportion of Olig2-negative/Mash1-positive cells. A decrease in Olig2+ cells was also observed in the cerebral cortex of adult PrP-APP(SW) mice. Cotransfection experiments with Mash1 cDNA and Olig2 siRNA revealed that overexpression of Mash1 in neurosphere cells retaining Olig2 expression enhanced neural differentiation but accelerated death of Olig2-depleted cells. Growth factor deprivation, which down-regulated Olig2, accelerated death of Mash1-overexpressing neurosphere cells. We conclude that cooperation between Mash1 and Olig2 is necessary for neural stem/progenitor cells to develop into fully mature neurons and that down-regulation of Olig2 by Abeta in Mash1-overexpressing cells switches the cell fate to death. Maintaining Olig2 expression in differentiating cells could have therapeutic potential.  相似文献   

2.
Cultures of the multipotential stem cell, embryonal carcinoma (EC), of a murine teratocarcinoma were treated with 5-bromodeoxyuridine (BrdU). Within 2-4 days at concentrations of 1-50 mugm/ml of BrdU, there was a marked change in the morphology of cells observed by light and electron microscopy. A comparison of the growth potential showed that for up to four days the BrdU-treated cultures were similar to untreated cultures. When these BrdU-treated cells were infected with Simian virus 40 (SV40) and polyoma virus (Py), there was an increase in susceptibility of the treated cells. The untreated embryonal carcinoma cells were refractory. These results suggest that BrdU modifies the embryonal carcinoma cells to allow infection with two DNA viruses.  相似文献   

3.
4.
5.
目的:探讨Wnt/β-catenin信号通路光遗传技术在促进新生神经元成熟中的作用。方法:从胎鼠大脑皮层中提取神经干细胞,用携带DCX-ChR2-EGFP基因的慢病毒感染神经干细胞,观察神经干细胞分化为新生神经元后DCX的表达。实验细胞分为3组(n=9):对照组、NSCs+EGFP和NSCs+ChR2组。其中对照组为正常培养的NSCs(NSCs组);NSCs+EGFP组为携带DCX-EGFP基因慢病毒感染神经干细胞组;NSCs+ChR2组为携带DCX-ChR2-EGFP基因慢病毒感染神经干细胞组。病毒感染后48 h后连续3 d行470 nm蓝激光照射,然后检测各组NeuN+阳性细胞(成熟神经元标志物)的密度和NeuN+/Hoechst比值情况;Western blot检测各组成熟神经元相关蛋白MAP2、NeuN、Neurog2、NeuroD1和GluR2蛋白表达水平和Wnt/β-catenin通道相关蛋白TCF4和β-catenin蛋白的表达水平。用L-型钙通道阻断剂100 μmol/L维拉帕米或50 μg/ml的β-catenin抑制剂Dkk1处理NSCs+ChR2组细胞,然后行Western blot检测各组MAP2、NeuN、Neurog2、NeuroD1和GluR2蛋白表达水平。结果:连续3 d 470 nm蓝激光照射后,NSCs+ChR2组中NeuN+阳性细胞密度(成熟细胞)和NeuN+/Hoechst明显高于NSCs组和NSCs+EGFP组(P均<0.05);Western blot检测的MAP2、NeuN、Neurog2、NeuroD1、GluR2蛋白及Wnt/β-catenin通路相关蛋白β-catenin、TCF4表达水平均明显高于NSCs组和NSCs+EGFP组(P均<0.01);L-型钙通道阻断剂维拉帕米或β-catenin抑制剂Dkk1处理NSCs+ChR2组细胞后MAP2、Neurog2、NeuroD1和GluR2蛋白表达水平明显下降(P均< 0.01),NeuN表达水平也下降(P<0.05)。证明ChR2通道蛋白开放产生阳离子内流促进新生神经元成熟,是通过Wnt/β-catenin信号通路实现的。结论:光遗传学方法通过Wnt/β-catenin信号通路促进新生神经元成熟。  相似文献   

6.
During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.  相似文献   

7.
Cognitive impairment in Alzheimer's disease (AD) patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs). Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ) peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES) cells with nerve growth factor (NGF) as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-μM concentrations) and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.  相似文献   

8.
This study reports an effect of taurine (1-10 mM) increasing markedly (120%) the number of neural precursor cells (NPCs) from adult mouse subventricular zone, cultured as neurospheres. This effect is one of the highest reported for adult neural precursor cells. Taurine-containing cultures showed 73-120% more cells than controls, after 24 and 96 h in culture, respectively. Taurine effect is due to enhanced proliferation as assessed by BrdU incorporation assays. In taurine cultures BrdU incorporation was markedly higher than controls from 1.5 to 48 h, with the maximal difference found at 1.5 h. This effect of taurine reproduced at every passage with the same window time. Taurine effects are not mimicked by glycine, alanine or GABA. Clonal efficiency values of 3.6% for taurine cultures and 1.3% for control cultures suggest a taurine influence on both, progenitor and stem cells. Upon differentiation, the proportion of neurons in control and taurine cultures was 3.1% (±0.5) and 10.2% (±0.8), respectively. These results are relevant for taurine implication in brain development as well as in adult neurogenesis. Possible mechanisms underlying taurine effects on cell proliferation are discussed.  相似文献   

9.
10.
We have previously shown that a combination of the cytokines interleukin (IL)-1, IL-11, leukemia inhibitory factor (LIF), and glial cell line-derived neurotrophic factor (GDNF) can convert rat fetal (E14.5) mesencephalic progenitor cells into tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in vitro. The experiments described here characterize the mesencephalic progenitor cells and their cytokine-induced conversion into dopamine (DA) neurons. For all experiments, we used bromodeoxyuridine (BrdU)-ir cultures of (E14.5) mesencephalic progenitor cells that had been expanded at least 21 days. We first demonstrated that IL-1 induced DA neuron conversion in mesencephalic progenitors, but not in striatal progenitors (P < 0.001). Thus, these cells should be classified as lineage-restricted progenitors, and not omnipotent stem cells. To further characterize cell populations in these cultures, we used monoclonal antibodies against Hu (an early marker for neurons), growth-associated protein (GAP)-43 (a marker for neuronal process extension), TH (a marker for DA neurons), and glial fibrillary acidic protein (GFAP, a marker for astrocytes). We assessed (E14.5) mesencephalic progenitor cell cultures (plated at 125,000 cells/cm2) incubated in the cytokine mixture (described above) or in complete media (CM, negative control). Following 7 days incubation, GFAP-positive cells formed a nearly confluent carpet in both types of cultures. However, numbers of Hu-ir and GAP-43-ir cells in the cytokine-incubated cultures far exceeded those in CM-incubated controls (P = 0.0003, P = 0.0001, respectively), while numbers of TH-ir cells were 58-fold greater in the cytokine-incubated cultures versus CM-incubated controls. The TH phenotype persisted for 7 days following withdrawal of the differentiation media. Numerous double-labeled cells that were BrdU-ir and also TH-ir, or Hu-ir and also TH-ir, were observed in the cytokine-incubated cultures. These data suggest that cytokines "drive" the conversion of progenitor cells into DA neurons.  相似文献   

11.
BMP-4 inhibits neural differentiation of murine embryonic stem cells.   总被引:10,自引:0,他引:10  
Members of the transforming growth factor-beta superfamily, including bone morphogenetic protein 4 (BMP-4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP-4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron-specific antibody TuJ1, aggregates maintained for 8 days in serum-free medium containing BMP-4 generated 5- to 10-fold fewer neurons. The action of BMP-4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP-4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK-1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP-4-treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP-4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP-4 antagonist noggin counteracted the effect of exogenous BMP-4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP-4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells.  相似文献   

12.
5-Bromo-2'-deoxyuridin (BrdU) is frequently used in anaylsis of neural stem cell biology, in particular to label and to fate-map dividing cells. However, up to now, only a few studies have addressed the question as to whether BrdU labeling per se affects the cells to be investigated. Here, we focused on the potential impact of BrdU on neurosphere cultures derived from the adult rat brain and on proliferation of progenitors in vivo. In vitro, neurospheres were pulsed for 48?h with BrdU, and cell proliferation, cell cycle, differentiation, survival and adhesion properties were subsequently analyzed. BrdU inhibited the expansion of neural progenitors as assessed by MTS assay and increased the fraction of cells in the G0/G1-phase of the cell cycle. Moreover, BrdU increased cell death and dose-dependently induced adherence of NPCs. Cell adherence was accompanied by a reduced amount of active matrix-metalloproteinase-2 (MMP-2). Furthermore, BrdU repressed neuronal and oligodendroglial differentiation, whereas astroglial fate was not affected. In contrast to the in vitro situation, BrdU apparently did not influence endogenous proliferation of NPCs or neurogenesis in concentrations that are typically used for labeling of neural progenitors in vivo. Our results reveal so far uncharacterized effects of BrdU on adult NPCs. We conclude that, because of its ubiquitous use in stem cell biology, any potential effect of BrdU of NPCs has to be scrutinized prior to interpretation of data.  相似文献   

13.
Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.  相似文献   

14.
S K Pixley 《Neuron》1992,8(6):1191-1204
Olfactory receptor neurons (ORNs) are replaced and differentiate in adult animals, but differentiation in dissociated cell culture has not been demonstrated. To test whether contact with the CNS regulates maturation, neonatal rat olfactory cells were grown on a culture substrate or on CNS astrocytes. Mature ORNs, immunopositive for olfactory marker protein (OMP), disappeared rapidly from both systems. Neurons positive for neuron-specific tubulin (immature and mature) disappeared from substrate-only cultures, but remained abundant in the cocultures. OMP-positive neurons reappeared after 10 days in vitro. Pulse labeling with [3H]thymidine showed extensive neurogenesis of both immature and mature olfactory neurons. This demonstrates, in vitro, both division and differentiation of olfactory progenitor cells.  相似文献   

15.
人胚与鼠胚神经干细胞体外培养的差异   总被引:2,自引:0,他引:2  
为比较人胚与鼠胚神经干细胞体外培养的差异。实验采用具有丝裂原作用的细胞生长因子。结合无血清细胞培养技术从人胚和鼠胚皮层分离神经干细胞。在连续传代过程中观察其体外培养特性,免疫荧光染色检测Nestin抗原和分化后特异性成熟神经细胞抗原的表达,并用流式细胞仪检测神经干细胞分化情况。结果表明:(1)使用单一生长因子即可从鼠胚皮层分离神经干细胞,但在人胚却需同时使用多种生长因子,协同使用bFGF,EGF和LIF是人胚神经干细胞体外培养的较佳条件;(2)鼠胚皮层神经干细胞在连续传代过程中增殖速度快于人胚,其Nestin阳性率和BrdU标记的阳性率亦高于人胚,表明其增殖能力明显高于人胚,(3)人胚神经干细胞较鼠胚更易分化为神经元。  相似文献   

16.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

17.
In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process.  相似文献   

18.
The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and β-III-tubulin, which are cytoskeleton proteins, are marker proteins of neural stem cells (NSCs) and neurons, respectively. However, the expression patterns of nestin and β-III-tubulin in neural derivatives from human ESCs remain unclear. In this study, we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast, β-III-tubulin was weakly expressed in a few NPCs. Moreover, in these cells, nestin formed filament networks, whereas β-III-tubulin was distributed randomly as small particles. As the differentiation proceeded, the nestin filament networks and the β-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover, the colocalization of nestin and β-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and β-III-tubulin during the neural differentiation of H9 cells.  相似文献   

19.
20.
The in vitro differentiation of quail neural crest cells into serotoninergic neurons is reported. Serotoninergic neurons were identified by two independent methods, formaldehyde-induced histofluorescence and indirect staining with antiserotonin antibodies. Serotonin-positive cells first appeared on the third day in culture, simultaneously, or slightly prior to the first pigmented cells and adrenergic neurons. Comparable numbers of serotoninergic cells were found in crest cell cultures derived from vagal, thoracic/upper lumbar, and lumbosacral levels of the neuraxis. The neural crest origin of the serotonin neurons was further corroborated by the demonstration that cultures of somites, notochords, and neural tubes (three tissues adjacent to the neural crest and thus the most likely contaminants of crest cell cultures) did not contain serotonin-producing cells, and that mast cells were absent in crest cell cultures. The identification of serotoninergic neurons in quail neural crest cell cultures makes an important addition to the number of neural crest derivatives that are capable of differentiating in culture. Furthermore, it suggests that the in vitro culture system will prove a valid approach to the elucidation of the cellular and molecular mechanisms that govern neural crest cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号