首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative splicing involving the 3' tandem splice site NAGNAG sequence may play a role in the structure-function diversity of proteins. However, how 3' tandem splice site utilization is determined is not well understood. We previously demonstrated that 3' NAGNAG-based wobble splicing occurs mostly in a tissue- and developmental stage-independent manner. Bioinformatic analysis reveals that the nucleotide preceding the AG dinucleotide may influence 3' splice site utilization; this is also supported by an in vivo splicing assay. Moreover, we found that the intron sequence plays an important role in 3' splice site selection for NAGNAG wobble splicing. Mutations of the region between the branch site and the NAGNAG 3' splice site, indeed, affected the ratio of the distal/proximal AG selection. Finally, we found that single nucleotide polymorphisms around the NAGNAG motif could affect the splice site choice, which may lead to a change in mRNA patterns and influence protein function. We conclude that the NAGNAG motif and its upstream region to the branch point sequence are required for 3' tandem splice site selection.  相似文献   

2.
Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. In vertebrates, most splice sites are initially recognized by the spliceosome across the exon, because most exons are small and surrounded by large introns. This gene architecture predicts that efficient exon recognition depends largely on the strength of the flanking 3' and 5' splice sites. However, it is unknown if the 3' or the 5' splice site dominates the exon recognition process. Here, we test the 3' and 5' splice site contributions towards efficient exon recognition by systematically replacing the splice sites of an internal exon with sequences of different splice site strengths. We show that the presence of an optimal splice site does not guarantee exon inclusion and that the best predictor for exon recognition is the sum of both splice site scores. Using a genome-wide approach, we demonstrate that the combined 3' and 5' splice site strengths of internal exons provide a much more significant separator between constitutive and alternative exons than either the 3' or the 5' splice site strength alone.  相似文献   

3.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

4.
5.
6.
7.
Intron definition in splicing of small Drosophila introns.   总被引:4,自引:1,他引:3       下载免费PDF全文
Approximately half of the introns in Drosophila melanogaster are too small to function in a vertebrate and often lack the pyrimidine tract associated with vertebrate 3' splice sites. Here, we report the splicing and spliceosome assembly properties of two such introns: one with a pyrimidine-poor 3' splice site and one with a pyrimidine-rich 3' splice site. The pyrimidine-poor intron was absolutely dependent on its small size for in vivo and in vitro splicing and assembly. As such, it had properties reminiscent of those of yeast introns. The pyrimidine-rich intron had properties intermediate between those of yeasts and vertebrates. This 3' splice site directed assembly of ATP-dependent complexes when present as either an intron or exon and supported low levels of in vivo splicing of a moderate-length intron. We propose that splice sites can be recognized as pairs across either exons or introns, depending on which distance is shorter, and that a pyrimidine-rich region upstream of the 3' splice site facilitates the exon mode.  相似文献   

8.
The majority of mammalian pre-mRNAs contains multiple introns that are excised prior to export and translation. After intron excision, ligated exon intermediates participate in subsequent intron excisions. However, exon ligation generates an exon of increased size, a feature of pre-mRNA splicing that can interfere with downstream splicing events. These considerations raise the question of whether unique mechanisms exist that permit efficient removal of introns neighboring ligated exons. Kinetic analyses of multiple intron-containing pre-mRNAs revealed that splicing is more efficient following an initial intron removal event, suggesting that either the recruitment of the exon junction complex (EJC) to ligated exons increases the efficiency of multiple intron excisions or that the initial definition of splice sites is sufficient to permit efficient splicing of introns neighboring ligated exons. Knockdown experiments show that the deposition of the EJC does not affect subsequent splicing kinetics. Instead, spliceosomal components that are not involved in the initial splicing event remain associated with the pre-mRNA to ensure efficient removal of neighboring introns. Thus, ligated exons do not require redefinition, providing an additional kinetic advantage for exon defined splice sites.  相似文献   

9.
10.
Here we report further characterization of an in vitro assay system for exon ligation by the human spliceosome in which the 3' splice site AG is supplied by a different RNA molecule than that containing the 5' splice and branch sites. By varying the time during splicing reactions when the 3' splice site AG is made available to the splicing machinery, we show that AG recognition need not occur until after lariat formation. Thus an early AG recognition event required for spliceosome formation and lariat formation on some mammalian introns is not required for exon ligation. Depletion/add-back studies and cold competitor challenge experiments reveal that commitment of a 3' splice site AG to exon ligation requires NTP hydrolysis. Because it both physically and kinetically uncouples exon ligation from spliceosome assembly and lariat formation, the bimolecular system will be a valuable tool for further mechanistic analysis of the second step of splicing.  相似文献   

11.
Two alternative exons, BEK and K-SAM, code for part of the ligand binding site of fibroblast growth factor receptor 2. Splicing of these exons is mutually exclusive, and the choice between them is made in a tissue-specific manner. We identify here pre-mRNA sequences involved in controlling splicing of the K-SAM exon. The short K-SAM exon sequence 5'-TAGGGCAGGC-3' inhibits splicing of the exon. This inhibition can be overcome by mutating either the exon's 5' or 3' splice site to make it correspond more closely to the relevant consensus sequence. Two separate sequence elements in the intron immediately downstream of the K-SAM exon, one of which is a sequence rich in pyrimidines, are both needed for efficient K-SAM exon splicing. This is no longer the case if either the exon's 5' or 3' splice site is reinforced. Furthermore, if the exon inhibitory sequence is removed, the intron sequences are not required for splicing of the K-SAM exon in a cell line which normally splices this exon. At least three elements are thus involved in controlling splicing of the K-SAM exon: suboptimal 5' and 3' splice sites, an exon inhibitory sequence, and intron activating sequences.  相似文献   

12.
The branch point (BP) is one of the three obligatory signals required for pre-mRNA splicing. In mammals, the degeneracy of the motif combined with the lack of a large set of experimentally verified BPs complicates the task of modeling it in silico, and therefore of predicting the location of natural BPs. Consequently, BPs have been disregarded in a considerable fraction of the genome-wide studies on the regulation of splicing in mammals. We present a new computational approach for mammalian BP prediction. Using sequence conservation and positional bias we obtained a set of motifs with good agreement with U2 snRNA binding stability. Using a Support Vector Machine algorithm, we created a model complemented with polypyrimidine tract features, which considerably improves the prediction accuracy over previously published methods. Applying our algorithm to human introns, we show that BP position is highly dependent on the presence of AG dinucleotides in the 3' end of introns, with distance to the 3' splice site and BP strength strongly correlating with alternative splicing. Furthermore, experimental BP mapping for five exons preceded by long AG-dinucleotide exclusion zones revealed that, for a given intron, more than one BP can be chosen throughout the course of splicing. Finally, the comparison between exons of different evolutionary ages and pseudo exons suggests a key role of the BP in the pathway of exon creation in human. Our computational and experimental analyses suggest that BP recognition is more flexible than previously assumed, and it appears highly dependent on the presence of downstream polypyrimidine tracts. The reported association between BP features and the splicing outcome suggests that this, so far disregarded but yet crucial, element buries information that can complement current acceptor site models.  相似文献   

13.
14.
Alternative splicing (AS) constitutes a major mechanism creating protein diversity in humans. Previous bioinformatics studies based on expressed sequence tag and mRNA data have identified many AS events that are conserved between humans and mice. Of these events, ~25% are related to alternative choices of 3′ and 5′ splice sites. Surprisingly, half of all these events involve 3′ splice sites that are exactly 3 nt apart. These tandem 3′ splice sites result from the presence of the NAGNAG motif at the acceptor splice site, recently reported to be widely spread in the human genome. Although the NAGNAG motif is common in human genes, only a small subset of sites with this motif is confirmed to be involved in AS. We examined the NAGNAG motifs and observed specific features such as high sequence conservation of the motif, high conservation of ~30 bp at the intronic regions flanking the 3′ splice site and overabundance of cis-regulatory elements, which are characteristic of alternatively spliced tandem acceptor sites and can distinguish them from the constitutive sites in which the proximal NAG splice site is selected. Our findings imply that AS at tandem splice sites and constitutive splicing of the distal NAG are highly regulated.  相似文献   

15.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

16.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

17.
NAGNAG alternative splicing is one type of alternative splicing in mammals and plants. There are two opposite arguments regarding the mechanism of this NAGNAG event, i.e. whether splice variation is controllable by the cell or is just biological noise. In this paper, we systematically investigated NAGNAG acceptors in Arabidopsis thaliana using both cDNA/EST and RNA-Seq data. We identified 9,473 NAGNAG motifs, including 529 cDNA/EST-confirmed NAGNAG acceptors. A nomenclature tree for this type of alternative splicing was defined based on the cDNA/EST validation, location in the exon, sequence and expression level. Low expression of some NAGNAG motifs was observed in various tissues or pathogen-infected samples, indicating the existence of background splicing. Tissue-specific or treatment-specific differences in the dynamic profiles suggest that some NAGNAG acceptors are highly regulated.  相似文献   

18.
Alternative splicing increases the coding capacity of genes through the production of multiple protein isoforms by the conditional use of splice sites and exons. Many alternative splice sites are regulated by the presence of purine-rich splicing enhancer elements (ESEs) located in the downstream exon. Although the role of ESEs in alternative splicing of the major class U2-dependent introns is well established, no alternatively spliced minor class U12-dependent introns have so far been described. Although in vitro studies have shown that ESEs can stimulate splicing of individual U12-dependent introns, there is no direct evidence that the U12-dependent splicing system can respond to ESEs in vivo. To investigate the ability of U12-dependent introns to use alternative splice sites and to respond to ESEs in an in vivo context, we have constructed two sets of artificial minigenes with alternative splicing pathways and evaluated the effects of ESEs on their alternative splicing patterns. In minigenes with alternative U12-dependent 3' splice sites, a purine-rich ESE promotes splicing to the immediately upstream 3' splice site. As a control, a mutant ESE has no stimulatory effect. In minigene constructs with two adjacent U12-dependent introns, the predominant in vivo splicing pattern results in the skipping of the internal exon. Insertion of a purine-rich ESE into the internal exon promotes the inclusion of the internal exon. These results show that U12-dependent introns can participate in alternative splicing pathways and that U12-dependent splice sites can respond to enhancer elements in vivo.  相似文献   

19.
20.
In vitro processing of the human growth hormone primary transcript   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号