首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used the 500-bp Xenopus ef1-alpha promoter and the 2-kb zebrafish histone 2A.F/Z promoter to generate several independent transgenic zebrafish lines expressing EGFP. While both promoters drive ubiquitous EGFP expression in early zebrafish development, they are systematically silenced in several adult tissues, including the retina and caudal fin. However, EGFP expression is temporarily renewed in the adult during either caudal fin or retinal regeneration. In the Tg(H2A.F/Z:EGFP)nt line, EGFP is moderately expressed in both the wound epithelium and blastema of the regenerating caudal fin. In the Tg(ef1-alpha:EGFP)nt line, EGFP expression is reinitiated and restricted to the blastema of the regenerating caudal fin and colabels with BrdU, PCNA, and msxc-positive cells. Thus, these two ubiquitous promoters drive EGFP transgene expression in different cell populations during caudal fin regeneration. We further analyzed the ability of the ef1-alpha:EGFP transgene to label nonterminally differentiated cells during adult tissue regeneration. First, we demonstrated that the transgene is highly methylated in adult zebrafish caudal fin tissue, but not during fin regeneration, implicating methylation as a potential means of transgene silencing in this line. Next, we determined that the ef1-alpha:EGFP transgene is also re-expressed during adult retinal regeneration. Specifically, the ef1-alpha:EGFP transgene colabels with PCNA in the Müller glia, a specialized cell that is the source of neuronal progenitors during zebrafish retinal regeneration. Thus, we concluded that Tg(ef1-alpha:EGFP)nt line visually marks nonterminally differentiated cells in multiple adult regeneration environments and may prove to be a useful marker in tissue regeneration studies in zebrafish.  相似文献   

2.
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.  相似文献   

3.
Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones.  相似文献   

4.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.  相似文献   

5.
X Li  J Montgomery  W Cheng  JH Noh  DR Hyde  L Li 《PloS one》2012,7(7):e40508
In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.  相似文献   

6.
In this study, we utilize fluorescent activated cell sorting (FACS) of cells from transgenic zebrafish coupled with microarray analysis to globally analyze expression of cell type specific genes. We find that it is possible to isolate cell populations from Tg(fli1:egfp)(y1) zebrafish embryos that are enriched in vascular, hematopoietic and pharyngeal arch cell types. Microarray analysis of GFP+ versus GFP- cells isolated from Tg(fli1:egfp)(y1) embryos identifies genes expressed in hematopoietic, vascular and pharyngeal arch tissue, consistent with the expression of the fli1:egfp transgene in these cell types. Comparison of expression profiles from GFP+ cells isolated from embryos at two different time points reveals that genes expressed in different fli1+ cell types display distinct temporal expression profiles. We also demonstrate the utility of this approach for gene discovery by identifying numerous previously uncharacterized genes that we find are expressed in fli1:egfp-positive cells, including new markers of blood, endothelial and pharyngeal arch cell types. In parallel, we have developed a database to allow easy access to both our microarray and in situ results. Our results demonstrate that this is a robust approach for identification of cell type specific genes as well as for global analysis of cell type specific gene expression in zebrafish embryos.  相似文献   

7.
8.
The adult zebrafish retina possesses a robust regenerative response. In the light-damaged retina, Müller glial cell divisions precede regeneration of rod and cone photoreceptors. Neuronal progenitors, which arise from the Müller glia, continue to divide and use the Müller glial cell processes to migrate to the outer nuclear layer and replace the lost photoreceptors. We tested the necessity of Müller glial cell division for photoreceptor regeneration. As knockdown tools were unavailable for use in the adult zebrafish retina, we developed a method to conditionally inhibit the expression of specific proteins by in vivo electroporation of morpholinos. We determined that two separate morpholinos targeted against the proliferating cell nuclear antigen (PCNA) mRNA reduced PCNA protein levels. Furthermore, injection and in vivo electroporation of PCNA morpholinos immediately prior to starting intense light exposure inhibited both Müller glial cell proliferation and neuronal progenitor marker Pax6 expression. PCNA knockdown additionally resulted in decreased expression of glutamine synthetase in Müller glia and Müller glial cell death, while amacrine and ganglion cells were unaffected. Finally, histological and immunological methods showed that long-term effects of PCNA knockdown resulted in decreased numbers of Müller glia and the failure to regenerate rod photoreceptors, short single cones, and long single cones. These data suggest that Müller glial cell division is necessary for proper photoreceptor regeneration in the light-damaged zebrafish retina and are consistent with the Müller glia serving as the source of neuronal progenitor cells in regenerating teleost retinas.  相似文献   

9.
Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina.  相似文献   

10.
Light-induced photoreceptor cell degeneration has been studied in several species, but not extensively in the teleost fish. Furthermore, the continual production of rods and cones throughout the teleost's life may result in regeneration of lost rods and cones. We exposed adult albino zebrafish to 7 days of constant darkness, followed by 7 days of constant 8000 lux light, followed by 28 days of recovery in a 14-h light:10-h dark cycle. We characterized the resulting photoreceptor layer cell death and subsequent regeneration using immunohistochemistry and light microscopy. Within the first 24 h of constant light, the zebrafish retina exhibited widespread rod and cone cell apoptosis. High levels of cell proliferation within the inner nuclear layer (INL) were observed within the first 3 days of constant light, as assessed by immunodetection of proliferating cell nuclear antigen and BrdU labeling. The proliferating cells within the INL were closely associated with the radial processes of Müller glia, similar to the pluripotent retinal stem cells observed during embryonic development. Using antibodies generated against the individual zebrafish opsins, we determined that rods and the green, blue, and ultraviolet cone cells were replaced within the 28 day recovery period. While both rods and cones were replaced, the well-ordered cone cell mosaic was not reestablished.  相似文献   

11.
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons.  相似文献   

12.
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.  相似文献   

13.
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroDEGFP fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD.  相似文献   

14.
Pax6 is a developmental regulatory gene that plays a key role in the development of the embryonic brain, eye, and retina. This gene is also expressed in discrete groups of neurons within the adult brain. In this study, antibodies raised against a fusion protein from a zebra fish pax6 cDNA were used to investigate the expression of the pax6 gene in the mature, growing, and regenerating retina of the goldfish. On western blots of retinal proteins, the pax6 antibodies recognize a single band at the approximate size of the zebra fish pax6 protein. In retinal sections, the antibodies label the nuclei of mature amacrine and some ganglion cells. At the retinal margin, where neurogenesis and cellular differentiation continually occur in goldfish, the antibodies label neuronal progenitors and the newly postmitotic neurons. Following injury and during neuronal regeneration, the antibodies label mitotically active progenitors of regenerating neurons. Rod precursors, proliferating cells that normally give rise solely to rod photoreceptors and are the presumed antecedents of the injury-stimulated neuronal progenitors, are not immunostained by antibodies to the pax6 protein. The results of this study document the identity of pax6-expressing cells in the mature retina and demonstrate that in the goldfish pax6 is expressed in neuronal progenitors during both retinal growth and regeneration. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

16.
Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish.  相似文献   

17.
Cone photoreceptor cells of fish retinae are arranged in a highly organized fashion. However, the molecular mechanisms underlying photoreceptor development and retinal pattern formation are largely unknown. Here we established transgenic lines of zebrafish carrying green fluorescent protein (GFP) cDNA with the 5.5-kb upstream region of the ultraviolet-sensitive cone opsin gene (SWS1). In the transgenic fish, GFP gene expression proceeded in the same spatiotemporal pattern as SWS1 in the retinae of embryos. In the adult retina, GFP expression was observed throughout the short single cone (SSC) layer where SWS1 is specifically expressed. Therefore, the transgenic fish provides an excellent genetic background to study retinal pattern formation, photoreceptor determination and differentiation, and factors regulating these processes and SSC-specific expression of SWS1.  相似文献   

18.
Constant intense light causes apoptosis of rod and cone photoreceptors in adult albino zebrafish. The photoreceptors subsequently regenerate from proliferating inner nuclear layer (INL) progenitor cells that migrate to the outer nuclear layer (ONL) and differentiate into rods and cones. To identify gene expression changes during this photoreceptor regeneration response, a microarray analysis was performed at five time points during the light treatment. The time course included an early time point during photoreceptor death (16 h), later time points during progenitor cell proliferation and migration (31, 51, and 68 h) and a 96 h time point, which likely corresponds to the initial photoreceptor differentiation. Mean expression values for each gene were calculated at each time point relative to the control (0 h light exposure) and statistical analysis by one-way ANOVA identified 4567 genes exhibiting significant changes in gene expression along the time course. The genes within this data set were clustered based on their temporal expression patterns and proposed functions. Quantitative real-time PCR validated the microarray expression profiles for selected genes, including stat3 whose expression increased markedly during the light exposure. Based on immunoblots, both total and activated Stat3 protein expression also increased during the light treatment. Immunolocalization of Stat3 on retinal tissue sections demonstrated increased expression in photoreceptors and Müller glia by 16 h of light exposure. Some of the Stat3-positive Müller cells expressed PCNA at 31 h, suggesting that Stat3 may play a role in signaling a subset of Müller cells to proliferate during the regeneration response.  相似文献   

19.
Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号