首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro permeation and absorption of calcium ions across the small intestine were measured at different concentrations of calcium gluconate solutions (1.0, 10.0 and 20.0 mM) with or without prolactin. The calcium ions permeated through the small intestine from a donor environment to an acceptor environment that mimicked the conditions in the stomach to ileum segment of the digestive tract. The permeation and absorption of calcium were directly dependent on the calcium concentration of the solutions. At 10 and 20 mM permeation was significantly higher than that at 1.0 mM (p < 0.05). In the presence of prolactin both permeation and absorption increase considerably. At the lowest concentration (1.0 mM) simulating calcium deficiency, there was compensation by the small intestine, suggesting that such deficiency stimulates its mobilization from intestinal tissue. Prolactin enhances the calcium mobilization process even at sufficient calcium intakes. It is suggested that prolactin takes part in regulation of calcium homeostasis in the organism.  相似文献   

2.
An in vitro model was used to simulate the intestinal permeation of calcium ions depending on the type of salt (carbonate, fumarate, citrate, or gluconate), its concentration (1.0, 2.5, 5.0, or 10 mM/l), and pH (1.3, 4.2, 6.2, or 7.5). To simulate the conditions for calcium permeation in a patient in a fasting state, the solutions were placed in contact with segments of small intestine of pig: stomach, duodenum, jejunum, and ileum. The percent permeation, its rate, and half-time were measured in each case. In all cases, the maximum permeation was seen at 1 mM concentration, depending on pH: 100% for carbonate at pH 1.3; 82% for fumarate, pH 6.2; 79.5% for citrate at pH 4.2, and 81% for gluconate at pH 7.4. The maximum rate of permeation (% h−1) was also observed at 1 mM: 2.16 for carbonate at pH 1.3, 0.29 for fumarate at pH 6.2, 0.26 for citrate at pH 4.2, and 0.28 for gluconate at pH 7.4. The shortest half-time permeation (t 1/2, h) for 1 mM solutions depended also on pH (in parentheses): carbonate 0.3 (1.3), fumarate 2.4 (6.2), citrate 2.6 (4.2), and gluconate 2.5 (7.4). The results suggest that calcium carbonate and citrate can be recommended to patients with normal gastric acidity and hyperacidity while fumarate and gluconate to patients with hypoacidity.  相似文献   

3.
The permeation of calcium’s ions from calcium solutions of fumarate, gluconate, and citrate through model membrane from the donor chamber to the acceptor chamber has been examined. Process was traced depending on the concentration of the appropriate calcium’s salts (1, 2.5, and 5 mmol/l) and pH value of acceptor environment (1.3, 6.2, and 7.4) which imitated natural conditions appearing in the digestive tract. The amount of permeating Ca(II) ions (percent) and their Ca(II) availability AUC (0–6 h) has been determined. In dependence on the conditions, penetration was as follows: 30.3–95.2% of calcium ions from fumarate solution; 73.0–90.1% of Ca(II) from citrate solution; and 19.0–95.0% of Ca from gluconate solution. The investigation indicates that the amount of permeated Ca(II) ions and their availability are connected with the concentration of the calcium salt and pH of acceptor environment. Fumarate and citrate are available at pH value of acceptor environment 1.3 and 6.2 and gluconate at the pH value of 6.2 and 7.4. These substances are practically unavailable from the acceptor environment at pH value 1.3 for gluconate and 7.4 for fumarate. Results suggest that calcium citrate can be available for organism independently from pH value of acceptor environment.  相似文献   

4.
The relationship between calcium binding and ATPase activity has been investigated for guinea pig cardiac sarcolemma. The concentrations of calcium ions and of ATP were the main factors in determining the amount of calcium bound. With a saturating concentration of ATP, at low calcium concentrations (0.1 mM) more than 50% of the total calcium bound was ATP dependent while at high concentrations of calcium (10 mM) only 20% of the calcium bound was ATP dependent. The ATP-dependent calcium binding process involves one class of calcium binding sites while the non-ATP-dependent calcium binding process involves two classes of binding sites. Inhibitor studies of Ca2+-stimulated MgATPase, MgATPase, and CaATPase activities suggest Ca2+ and Mg2+ are either interacting with different sites on the same enzyme or with different enzymes.  相似文献   

5.
The mechanism of Cl ion permeation through single cystic fibrosis transmembrane conductance regulator (CFTR) channels was studied using the channel-blocking ion gluconate. High concentrations of intracellular gluconate ions cause a rapid, voltage-dependent block of CFTR Cl channels by binding to a site ∼40% of the way through the transmembrane electric field. The affinity of gluconate block was influenced by both intracellular and extracellular Cl concentration. Increasing extracellular Cl concentration reduced intracellular gluconate affinity, suggesting that a repulsive interaction occurs between Cl and gluconate ions within the channel pore, an effect that would require the pore to be capable of holding more than one ion simultaneously. This effect of extracellular Cl is not shared by extracellular gluconate ions, suggesting that gluconate is unable to enter the pore from the outside. Increasing the intracellular Cl concentration also reduced the affinity of intracellular gluconate block, consistent with competition between intracellular Cl and gluconate ions for a common binding site in the pore. Based on this evidence that CFTR is a multi-ion pore, we have analyzed Cl permeation and gluconate block using discrete-state models with multiple occupancy. Both two- and three-site models were able to reproduce all of the experimental data with similar accuracy, including the dependence of blocker affinity on external Cl (but not gluconate) ions and the dependence of channel conductance on Cl concentration. The three-site model was also able to predict block by internal and external thiocyanate (SCN) ions and anomalous mole fraction behavior seen in Cl/SCN mixtures.  相似文献   

6.
The effect of calcium, phosphate and the sugars lactose and sorbitol on the intestinal absorption of manganese were studied in adult male rats. Gastric gavage showed that lactose (100 mM or 200 mM) increased the hepatic retention of 54Mn, while phosphate decreased it. In situ ileal loop studies indicated that Mn absorption was normally complete in 30 min. Sorbitol had no effect on uptake during this period, but extended Mn absorption from 30 min to 120 min. Low concentrations of Mn (10 microM) did not alter the enhancing effect of lactose on calcium transport (10 mM), but the enhancing effect of lactose on Mn transport was blocked by this high calcium concentration. Intestinal alkaline phosphatase activity was rapidly stimulated by Mn. These similarities plus the competition between cations, especially calcium, suggest that a common mechanism exists in their intestinal transport.  相似文献   

7.
The lysis of human erythrocytes by bile salts in buffer containing isotonic saline was dramatically enhanced by the addition of 5-10 mM calcium chloride. All bile acids tested showed this effect, with a marked increase in lysis occurring at 0.75 mM for deoxycholate, 1 mM for chenodeoxycholate, 2.5 mM for ursodeoxycholate and 5.5 mM with cholate in the presence of 10 mM calcium chloride. The effect appeared to be specific for calcium; strontium chloride and magnesium chloride gave no stimulatory effect. The increased lysis of the erythrocytes in the presence of 1 mM deoxycholate and 1-10 mM calcium chloride was not associated with increased uptake of the bile salt by the cells (measured with [14C]deoxycholate). Using erythrocytes previously labelled with [3H]cholesterol, there was no evidence of an enhanced removal of that membrane component in the presence of calcium and deoxycholate, compared to deoxycholate alone. The sensitivity of the cells to the effect of calcium in the presence of 1 mM deoxycholate increased with the length of time of their storage at 4 degrees C. The sensitivity returned to that of fresh cells after incubation at 37 degrees C with 30 mM adenosine plus 25 mM glucose, but this treatment did not further diminish the lysis. Lysis in the presence of 10 mM calcium chloride and 1 mM deoxycholate was partially blocked by increasing the KCl concentration at the expense of NaCl. The maximum effect occurred with a buffer comprising 100 mM KCl/50 mM NaCl. A more dramatic reduction in the lysis followed the incorporation of the calcium chelator, quin2, into the cells. The lysis induced by 1 mM deoxycholate in the presence of calcium was reduced by 80% in quin-2-loaded cells compared to controls. The data suggest that bile acids can promote the influx of calcium into erythrocytes, leading to lysis as a result of the efflux of intracellular potassium and/or the uptake of sodium from the incubation medium. The data further suggest that cellular effects may occur at lower bile acid concentrations than that thought to be required for detergent damage.  相似文献   

8.
Knapp O  Maier E  Polleichtner G  Masín J  Sebo P  Benz R 《Biochemistry》2003,42(26):8077-8084
Calmodulin-dependent adenylate cyclase toxin (ACT or CyaA) of Bordetella pertussis requires calcium ions for target cell binding, formation of hemolytic channels, and delivery of its enzyme component into cells. We examined the effect of calcium and calmodulin on toxin interaction with planar lipid bilayers. While calmodulin binding did not affect the properties of CyaA channels, addition of calcium ions and toxin to the same side of the membrane caused a steep increase of the channel-forming capacity of CyaA. The calcium effect was highly specific, since among other divalent cations only strontium caused some CyaA activity enhancement. The minimal stimulatory concentration of calcium ions ranged from 0.6 to 0.8 mM, depending on the ionic strength of the aqueous phase. Half-maximal channel activity of CyaA was observed at 2-4 mM, and saturation was reached at 10 mM calcium concentration, respectively. The unit size of single CyaA channels, assessed as single-channel conductance, was not affected by calcium ions, while the frequency of CyaA channel formation strongly depended on calcium concentration. The calcium effect was abrogated upon deletion of the RTX repeats of the toxin, suggesting that binding of calcium ions to the repeats modulates the propensity of CyaA to form membrane channels.  相似文献   

9.
The effect of 55 mM K+ and nicotine on intracellular free calcium was monitored in bovine adrenal chromaffin cells microinjected with aequorin. In contrast to results with quin 2, which suggested that stimulation of chromaffin cells resulted in sustained rises in free calcium, aequorin measurements showed that 55 mM K+ and nicotine resulted in a transient (60-90 s) elevation of free calcium. The peak free calcium and duration of the transient elicited by nicotine were dose-dependent. The concentration of nicotine (10 microM) giving a maximal secretory response gave a peak rise in free calcium of up to 1 microM. 55 mM K+ which only releases 30% of the catecholamine released by 10 microM nicotine generated a calcium transient indistinguishable from that due to 10 microM nicotine. These results support the idea that nicotine agonists generate an alternative second messenger in addition to the rise in free calcium.  相似文献   

10.
Phosphorylation of the calcium-transport ATPase of skeletal muscle sarcoplasmic reticulum by inorganic phosphate was investigated in the presence or absence of a calcium gradient. The maximum phosphoprotein formation in the presence of a calcium gradient at 20 degrees C and pH 7.0 is approximately 4 nmol/mg sarcoplasmic reticulum protein, but only between 2.4 and 2.8 nmol/mg protein in the absence of a calcium gradient, using Ionophore X-537 A or phospholipase-A-treated sarcoplasmic reticulum vesicles. Maximum phosphoprotein formation independent of calcium gradient at 20 degrees C and pH 6.2 is in the range of 3.6--4 nmol/mg protein. Half-maximum phosphoprotein formation dependent on calcium gradient was achieved with 0.1--0.2 mM free orthophosphate at 10 mM free magnesium or at 0.1--0.2 mM free magnesium at 10 mM free orthophosphate. Phosphoprotein formation independent of calcium gradient is in accordance with a model which assumes, firstly, the formation of a ternary complex of the ATPase protein with orthophosphate and magnesium (E . Pi . Mg) in equilibrium with the phosphoprotein (E-Pi . Mg) and, secondly, an interdependence of both ions in the formation of the ternary complex. The apparent equilibrium constant was 0.6 and the apparent dissociation constants KMg, KMg', KPi and KPi' were 8.8, 1.9, 7.2 and 1.5 mM respectively, assuming a total concentration of the phosphorylation site per enzyme of 7 nmol/mg protein.  相似文献   

11.
The influence of external calcium variation (0.7–28 mM) on acetylcholine (ACh) induced conductance changes was examined under voltage clamp conditions in snail neurons in which ACh elicitis hyperpolarizing responses and in which the main current-carrying ion species is Cl?. Raising external calcium to 28 mM as well as lowering external calcium to 1.75 mM decreased the ACh-induced condutance change without altering the reversal potential for ACh-induced currents. Lowering external calcium to 0.7 mM increased the ACh-induced conductance change and shifted the reversal potential to less negative values. The results at 28 mM calcium can be best explained on the assumption that excess calcium interferes with the interaction between ACh and the receptor. The results at 1.75 mM calcium can be satisfactorily explained in terms of the concept that fixed membrane charges play a role in regulating Cl? permeation through transmitter sensitive membranes. Evidence was also obtained that in snail neurons receptor inactivation increases when external calcium is reduced.  相似文献   

12.
Two protein kinases active on casein and phosvitin were partially purified from the soluble fraction of ejaculated bovine spermatozoa. They were operationally termed casein kinase A and B based on the order of their elution from a phosphocellulose column. CK-A showed an approximate molecular mass of 38 kDa, and it phosphorylated serine residues of casein and phosvitin utilizing ATP as a phosphate donor (Km 19 microM). Enzyme activity was maximal in the presence of 10 mM MgCl2, whereas it decreased in the presence of spermine, polylysine, quercetin, and NaCl (20-250 mM). CK-B seemed to have a monomeric structure of about 41 kDa; it underwent autophosphorylation and cross-reacted with polyclonal antibodies raised against recombinant alpha, but not beta, subunit of human type 2 casein kinase. It phosphorylated both serine and threonine residues of casein and phosvitin, utilizing ATP (Km 12 microM) but not GTP as a phosphate donor. Threonine was more affected in the phosphorylated phosvitin than in the partially dephosphorylated substrate. CK-B was active toward the synthetic peptide Ser-(Glu)5 and calmodulin (in the latter case, in the presence of polylysine), and it was activated by spermine, polylysine, MgCl2 (30 mM), and NaCl (20-400 mM). The activity of the enzymes was not affected by cAMP, or the heat-stable inhibitor of the cAMP-dependent protein kinase, or calcium.  相似文献   

13.
1. Absorption of ingested calcium (2 ml of a 10mM CaCl2 solution + 45Ca) by the adult rat was shown to be facilitated by the simultaneous ingestion of an active carbohydrate, L-arabinose. As the carbohydrate concentration is increased from 10 to 200 mM, the adsorption of calcium is maximized at a level corresponding to about twice the control adsorption level. 2. A similar doubling of calcium adsorption is obtained when a 100 mM concentration of any one of a number of other carbohydrates (gluconic acid, mannose, glucosamine, sorbitol, lactose, raffinose, stachyose) is ingested simultaneously with a 10 mM CaCl2 solution. 3. Conversely, the simultaneous ingestion of increasing doses (10 to 100 mM) of phosphate (NaH2PO4) with a 10 mM CaCl2 solution results in decreased 45Ca absorption and retention by the adult rat. 4. The maximum inhibition of calcium adsorption by phosphate is independent of the concentration of the ingested calcium solution (from 5 to 50 mM CaCl2). 5. The simultaneous ingestion of CaCl2 (10 mM) with lactose and sodium phosphate (50 and 10 mM, respectively) shows that the activating effect of lactose upon 45Ca adsorption may be partly dissimulated by the presence of phosphate. 6. These various observations indicate that, within a large concentration range (2 to 50 mM CaCl2), calcium adsorption appears to be a precisely modulated diffusion process. Calcium absorption varies (between minimum and maximum levels) as a function of the state of saturation by the activators (carbohydrates) and inhibitors (phosphate) of the calcium transport system.  相似文献   

14.
P M Macdonald  J Seelig 《Biochemistry》1987,26(5):1231-1240
The binding of calcium to bilayer membranes composed of mixtures, in various proportions, of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) was investigated by using atomic absorption spectroscopy and deuterium nuclear magnetic resonance. The number of bound calcium ions, X2, was determined in the low calcium concentration range (up to 100 mM) via atomic absorption spectroscopy. Simultaneous measurements of the deuterium magnetic resonance spectra of POPC, specifically deuteriated at the alpha-methylene segment of the choline head group, revealed a linear relationship between the quadrupole splitting, delta vQ, and X2 for each particular proportion of POPC-POPG. The amount of bound calcium was then determined at much greater calcium concentrations, where the atomic absorption spectroscopy measurements were unreliable, using deuterium magnetic resonance. At low Ca2+ concentrations, the amount of bound Ca2+ increased linearly with increasing proportion of POPG, demonstrating an electrostatic contribution to Ca2+ binding. At high Ca2+ concentrations, the calcium binding isotherms exhibited saturation behavior with a maximum binding capacity of 0.5 Ca2+ and 1.0 Ca2+ per phospholipid for pure POPC and mixtures of POPC-POPG, respectively. Simultaneous deuteriation of POPG and POPC showed that both lipids remained in a fluidlike lipid bilayer at all Ca2+ concentrations tested. Any phase separation of quasi-crystalline Ca2+-POPG clusters could be excluded. The residence time of Ca2+ at an individual head group binding site was shorter than 10(-6)-10(-5) s. Thus, Ca2+ ions accumulate near the negatively charged POPG-POPC membrane surface but move freely in a "trough" of the electrical potential. The effective surface charge density, sigma, could be determined from the measured amount of bound Ca2+. Subsequently, the surface potential, psi 0, and the concentration of free Ca2+ ions at the plane of ion binding could be calculated by employing the Gouy-Chapman theory. The availability of these parameters allowed a rigorous evaluation of various models for the chemical contribution to Ca2+ binding. For mixed POPC-POPG bilayers, a simple Langmuir adsorption model yielded the best fit to the experimental data, and the binding constants were 19.5 and 18.8 M-1 for POPG contents of 20 and 50 mol %, respectively. Sodium binding was comparatively weak with a binding constant of 0.6-0.85 M-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Calcium ions are required for fusion of a wide variety of artificial and biological membranes. To examine the role of calcium ions for cell fusion mediated by interactions between CD4 and the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41), we used two experimental systems: (i) cells expressing gp120-gp41 and its receptor CD4, both encoded by recombinant vaccinia viruses, and (ii) chronically infected cells producing low levels of HIV-1. Fusion was measured by counting the number of syncytia and by monitoring the redistribution of fluorescence dyes by video microscopy. Syncytia did not form in solutions without calcium ions. Addition of calcium ions partially restored the formation of syncytia. EDTA and EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] blocked syncytium formation in culture media containing calcium ions. Membrane fusion as monitored by fluorescence dye redistribution also required calcium ions. Cell fusion increased with an increase in calcium ion concentration from 100 microM to 10 mM but was not affected by magnesium ions in the concentration range from 0 to 30 mM. Fibrinogen and fibronectin did not promote fusion in the absence or presence of Ca2+. Binding of soluble CD4 to gp120-gp41-expressing cells was not affected by Ca2+ and Mg2+. We conclude that Ca2+ is involved in postbinding steps in cell fusion mediated by the CD4-HIV-1 envelope glycoprotein interaction.  相似文献   

16.
A biphasic increase of hemolymph glucose levels was observed following injection to bees of cupric gluconate or sulfate, both potent agents for the control of Varroa jacobsoni, a parasitic mite of hives. The simultaneous injection to bees of 0.3 μM BAYg5421 (an inhibitor of α-glucosidases) quenched the response, suggesting a direct effect of 2 nmol/bee cupric ions on trehaloses' activity. One nanomol of injected cupric gluconate increased the trehalose (Tre) activity by 233% in crude hemolymph extracts at 1 mM trehalose concentration, and exhibited biphasic dose-related effects with a maximum 15% increase at 0.5 mM cupric ion and a stabilized 20% inhibition from 4 mM, regardless of the anionic moiety. Upon partial purification of the enzyme complex, two fractions (FI = 75% and FII = 25% of total activity) were isolated that exhibited, respectively, less and more marked positive cooperativity than crude extract. Form I showed almost no susceptibility to either cupric derivatives, which indicated form II as the most likely target, with 68% and 72% increases with 0.25 mM cupric sulfate and 0.5 mM cupric gluconate, in presence of 16 mM trehalose.  相似文献   

17.
Polyamines Stimulate Mitochondrial Calcium Transport in Rat Brain   总被引:3,自引:1,他引:2  
The effects of the polyamines spermine and spermidine on rat brain mitochondrial calcium transport were examined using a variety of techniques for measuring the kinetics of calcium uptake and the buffering capabilities of isolated mitochondria. Spermine both increased the rate of calcium accumulation and decreased the set-point to which isolated mitochondria buffer free calcium concentration. In the presence of physiological concentrations of sodium and magnesium, spermine lowered the extramitochondrial calcium level to approximately 0.3 microM, a value close to the resting intracellular calcium concentration. The effect of polyamines was concentration dependent, with a half-maximal effect of spermine observed at approximately 0.1-0.4 mM (respiratory substrate dependent), whereas spermidine was approximately 10 times less potent. Calcium transport by hippocampal mitochondria was stimulated markedly more by spermine than was calcium transport by mitochondria isolated from brainstem. The stimulatory effect of spermine was not due to an increase in the transport of respiratory substrates inside the mitochondria nor to an effect on the enzymes using these respiratory substrates. An examination of the effect of spermine on the kinetics of calcium uptake indicated that spermine increased calcium uptake maximally at low calcium concentrations. Beyond that level, the stimulatory effect of spermine decreases, and spermine can even inhibit calcium uptake. These results are in good agreement with previous reports on the effects of polyamines on calcium transport in mitochondria from peripheral tissue. They support the hypothesis that spermine increases the rate of calcium uptake by mitochondria by increasing the affinity of the uniporter for calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The waste mycelium of Penicillium chrysogenum HA-10 (obtained at the end of penicillin fermentation), or a 24-hr-old freshly grown vegetative inoculum of this organism, was found to utilize glucose for the production of calcium gluconate by submerged fermentation in shake flasks. After 72 to 96 hr of fermentation at 24 C, 90 to 95% of the reducing sugar from the 15% glucose medium was converted to calcium gluconate. Reuse of the mycelium for successive experiments reduced the fermentation period to 72 hr or less because of an enhancement of glucose utilization. Ten successive batches of 15% glucose medium were fermented by the reuse method. Fermentation media containing up to 30% glucose could be used, provided boric acid was added to prevent the precipitation of calcium gluconate formed. We found that 30% hydrol (a by-product of glucose manufacture containing 50 to 55% reducing sugar), when used in place of glucose in the fermentation medium, inhibited the rate of glucose utilization. However, this effect was partially reversed by pretreatment of hydrol with 2 to 4% activated charcoal before addition to the fermentation medium.  相似文献   

19.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

20.
The effect of Ca-ionophore A23187 on activation of rat blood platelets was investigated to elucidate the involvement of extracellular and intracellular Ca2+ ions. Platelet aggregation induced by 10 concentrations of the stimulus was studied in Ca-free medium as well as in the presence of EGTA and/or calcium. In Ca-free medium, A23187 induced platelet aggregation in a dose-dependent way; the mean effective concentration was 1.43 +/- 0.08 mumol/l. The stimulatory effect of ionophore was potentiated by addition of 0.01 and 0.1 mM calcium and inhibited when the calcium concentration was increased to 1 mmol/l. In the presence of EGTA, A23187-stimulated aggregation of isolated rat platelets was recorded only at a 10-times higher ionophore concentration and was then reduced to 30% in comparison with aggregation in Ca-free medium. The inhibitory effect of 1 mM EGTA was abolished by addition of 2 mM calcium. We suggest the participation of at least three calcium pools in the stimulation of rat platelets by A23187, i.e. the extracellular pool, the membrane-associated pool and the pool displacing calcium intracellularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号