首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), has been identified in patients with prostate cancer and in patients with chronic fatigue syndromes. Standard Mus musculus laboratory mice lack a functional XPR1 receptor for XMRV and are therefore not a suitable model for the virus. In contrast, Gairdner's shrew-mice (Mus pahari) do express functional XPR1. To determine whether Mus pahari could serve as a model for XMRV, primary Mus pahari fibroblasts and mice were infected with cell-free XMRV. Infection of cells in vitro resulted in XMRV Gag expression and the production of XMRV virions. After intraperitoneal injection of XMRV into Mus pahari mice, XMRV proviral DNA could be detected in spleen, blood, and brain. Intravenous administration of a green fluorescent protein (GFP) vector pseudotyped with XMRV produced GFP(+) CD4(+) T cells and CD19(+) B cells. Mice mounted adaptive immune responses against XMRV, as evidenced by the production of neutralizing and Env- and Gag-specific antibodies. Prominent G-to-A hypermutations were also found in viral genomes isolated from the spleen, suggesting intracellular restriction of XMRV infection by APOBEC3 in vivo. These data demonstrate infection of Mus pahari by XMRV, potential cell tropism of the virus, and immunological and intracellular restriction of virus infection in vivo. These data support the use of Mus pahari as a model for XMRV pathogenesis and as a platform for vaccine and drug development against this potential human pathogen.  相似文献   

2.
XMRV, or xenotropic murine leukemia virus (MLV)-related virus, is a novel gammaretrovirus originally identified in studies that analyzed tissue from prostate cancer patients in 2006 and blood from patients with chronic fatigue syndrome (CFS) in 2009. However, a large number of subsequent studies failed to confirm a link between XMRV infection and CFS or prostate cancer. On the contrary, recent evidence indicates that XMRV is a contaminant originating from the recombination of two mouse endogenous retroviruses during passaging of a prostate tumor xenograft (CWR22) in mice, generating laboratory-derived cell lines that are XMRV-infected. To confirm or refute an association between XMRV and prostate cancer, we analyzed prostate cancer tissues and plasma from a prospectively collected cohort of 39 patients as well as archival RNA and prostate tissue from the original 2006 study. Despite comprehensive microarray, PCR, FISH, and serological testing, XMRV was not detected in any of the newly collected samples or in archival tissue, although archival RNA remained XMRV-positive. Notably, archival VP62 prostate tissue, from which the prototype XMRV strain was derived, tested negative for XMRV on re-analysis. Analysis of viral genomic and human mitochondrial sequences revealed that all previously characterized XMRV strains are identical and that the archival RNA had been contaminated by an XMRV-infected laboratory cell line. These findings reveal no association between XMRV and prostate cancer, and underscore the conclusion that XMRV is not a naturally acquired human infection.  相似文献   

3.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   

4.

Background

Xenotropic murine leukemia virus-related virus (XMRV) has been found in the prostatic tissue of prostate cancer patients and in the blood of chronic fatigue syndrome patients. However, numerous studies have found little to no trace of XMRV in different human cohorts. Based on evidence suggesting common transmission routes between XMRV and HIV-1, HIV-1 infected individuals may represent a high-risk group for XMRV infection and spread.

Methodology/Principal Findings

DNA was isolated from the peripheral blood mononuclear cells (PBMCs) of 179 HIV-1 infected treatment naïve patients, 86 of which were coinfected with HCV, and 54 healthy blood donors. DNA was screened for XMRV provirus with two sensitive, published PCR assays targeting XMRV gag and env and one sensitive, published nested PCR assay targeting env. Detection of XMRV was confirmed by DNA sequencing. One of the 179 HIV-1 infected patients tested positive for gag by non-nested PCR whereas the two other assays did not detect XMRV in any specimen. All healthy blood donors were negative for XMRV proviral sequences. Sera from 23 HIV-1 infected patients (15 HCV+) and 12 healthy donors were screened for the presence of XMRV-reactive antibodies by Western blot. Thirteen sera (57%) from HIV-1+ patients and 6 sera (50%) from healthy donors showed reactivity to XMRV-infected cell lysate.

Conclusions/Significance

The virtual absence of XMRV in PBMCs suggests that XMRV is not associated with HIV-1 infected or HIV-1/HCV coinfected patients, or blood donors. Although we noted isolated incidents of serum reactivity to XMRV, we are unable to verify the antibodies as XMRV specific.  相似文献   

5.
6.
7.
Baliji S  Liu Q  Kozak CA 《Journal of virology》2010,84(24):12841-12849
Laboratory mouse strains carry endogenous copies of the xenotropic mouse leukemia viruses (X-MLVs), named for their inability to infect cells of the laboratory mouse. This resistance to exogenous infection is due to a nonpermissive variant of the XPR1 gammaretrovirus receptor, a resistance that also limits in vivo expression of germ line X-MLV proviruses capable of producing infectious virus. Because laboratory mice vary widely in their proviral contents and in their virus expression patterns, we screened inbred strains for sequence and functional variants of the XPR1 receptor. We also typed inbred strains and wild mouse species for an endogenous provirus, Bxv1, that is capable of producing infectious X-MLV and that also contributes to the generation of pathogenic recombinant MLVs. We identified the active Bxv1 provirus in many common inbred strains and in some Japanese Mus molossinus mice but in none of the other wild mouse species that carry X-MLVs. Our screening for Xpr1 variants identified the permissive Xpr1(sxv) allele in 7 strains of laboratory mice, including a Bxv1-positive strain, F/St, which is characterized by lifelong X-MLV viremia. Cells from three strains carrying Xpr1(sxv), namely, SWR, SJL, and SIM.R, were shown to be infectable by X-MLV and XMRV; these strains carry different alleles at Fv1 and vary in their sensitivities to specific X/P-MLV isolates and XMRV. Several strains with Xpr1(sxv) lack the active Bxv1 provirus or other endogenous X-MLVs and may provide a useful model system to evaluate the in vivo spread of these gammaretroviruses and their disease potential in their natural host.  相似文献   

8.
Xenomitochondrial mice harboring trans-species mitochondria on a Mus musculus domesticus (MD) nuclear background were produced. We created xenomitochondrial ES cell cybrids by fusing Mus spretus (MS), Mus caroli (MC), Mus dunni (Mdu), or Mus pahari (MP) mitochondrial donor cytoplasts and rhodamine 6-G treated CC9.3.1 or PC4 ES cells. The selected donor backgrounds reflected increasing evolutionary divergence from MD mice and the resultant mitochondrial-nuclear mismatch targeted a graded respiratory chain defect. Homoplasmic (MS, MC, Mdu, and MP) and heteroplasmic (MC) cell lines were injected into MD ova, and liveborn chimeric mice were obtained (MS/MD 18 of 87, MC/MD 6 of 46, Mdu/MD 31 of 140, and MP/MD l of 9 founder chimeras, respectively). Seven MS/MD, 1 MC/MD, and 11 Mdu/MD chimeric founder females were mated with wild-type MD males, and 18 of 19 (95%) were fertile. Of fertile females, only one chimeric MS/MD (1% coat color chimerism) and four chimeric Mdu/MD females (80-90% coat color chimerism) produced homoplasmic offspring with low efficiency (7 of 135; 5%). Four male and three female offspring were homoplasmic for the introduced mitochondrial backgrounds. Three male and one female offspring proved viable. Generation of mouse lines using additional female ES cell lineages is underway. We hypothesize that these mice, when crossbred with neurodegenerative-disease mouse models, will show accelerated age-related neuronal loss, because of their suboptimal capacity for oxidative phosphorylation and putatively increased oxidative stress.  相似文献   

9.
Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.  相似文献   

10.
11.
The evolution of virulence was studied in a virus subjected to alternating episodes of vertical and horizontal transmission. Bacteriophage f1 was used as the parasite because it establishes a debilitating but non-fatal infection that can be transmitted vertically (from a host to its progeny) as well as horizontally (infection of new hosts). Horizontal transmission was required of all phage at specific intervals, but was prevented otherwise. Each episode of horizontal transmission was followed by an interval of obligate vertical transmission, followed by an interval of obligate horizontal transmission etc. The duration of vertical transmission was eight times longer per episode in one treatment than in the other, thus varying the relative intensity of selection against virulence while maintaining selection for some level of virus production. Viral lines with the higher enforced rate of infectious transmission evolved higher virulence and higher rates of virus production. These results support the trade-off model for the evolution of virulence.  相似文献   

12.
Using four repetitive sequences, we compared DNAs isolated from Mus caroli, M. cookii, M. hortulanus, M. musculus, M. pahari, M. saxicola, and M. spretus. Except for B1, these probes showed species-specific hybridization patterns. Mouse interspersed fragment (MIF) sequences were present in all species examined, but those defined by the 1.3-kb EcoR1 band were fewer in M. pahari and M. saxicola than in the other species. The Y-chromosomal probe showed male-specific accumulation only in M. hortulanus, M. musculus, and M. spretus, which are known to be closely related. The genetic difference between M. spretus and the other two species (M. hortulanus and M. musculus) was clearly demonstrated by a M. musuclus centromeric sequence that hybridized strongly to M. hortulanus and M. musculus DNA but was underrepresented in the genome of M. spretus. These results may suggest the usefulness of these repetitive sequences in the classification of Mus species that display only subtle morphological differences.  相似文献   

13.
The microsporidium Octosporea bayeri can infect its host, the planktonic crustacean Daphnia magna, vertically and horizontally. The two routes differ greatly in the way the parasite leaves the harbouring host (transmission) and in the way it enters a new, susceptible host (infection). Infections resulting from each route may thus vary in the way they affect host and parasite life-histories and, subsequently, host and parasite fitness. We conducted a life-table experiment to compare D. magna infected with O. bayeri either horizontally or vertically, using three different parasite isolates. Both the infection route and the parasite isolate had significant effects on host life-history. Hosts matured at different ages depending on the parasite isolate, and at a size that varied with infection route. The frequency of host sterility and the host's life-time reproductive success were affected by both the infection route and the parasite isolate. The infection route also affected parasite life-history. The production of parasite spores was much higher in vertically than in horizontally infected hosts. We found a trade-off between the production of spores (the parasite's horizontal fitness component) and the production of infected host offspring (the parasite's vertical fitness component). This study shows that hosts and parasites can react plastically to different routes of infection, suggesting that ecological factors that may influence the relative importance of horizontal and vertical transmission can shape the evolution of host and parasite life histories, and, consequently, the evolution of virulence.  相似文献   

14.
云南省锡金小鼠体表革螨感染分析   总被引:1,自引:0,他引:1  
为了解云南省锡金小鼠(Mus pahari)体表革螨的感染情况及分布规律,本研究基于1990至2015年云南省39个县(市)的调查数据,统计分析锡金小鼠体表革螨的基本感染情况和感染差异.使用聚块指数测定革螨空间分布型,用Jaccard指数计算革螨物种相似性.从捕获的720只锡金小鼠体表共采集到革螨14 098只,鉴定为...  相似文献   

15.
16.

Introduction

XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.

Methods

Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray.

Results

MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types.

Discussion

The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.  相似文献   

17.

Background

Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was initially identified in prostate cancer (PCa) tissue, particularly in the prostatic stromal fibroblasts, of patients homozygous for the RNASEL R462Q mutation. A subsequent study reported XMRV antigens in malignant prostatic epithelium and association of XMRV infection with PCa, especially higher-grade tumors, independently of the RNASEL polymorphism. Further studies showed high prevalence of XMRV or related MLV sequences in chronic fatigue syndrome patients (CFS), while others found no, or low, prevalence of XMRV in a variety of diseases including PCa or CFS. Thus, the etiological link between XMRV and human disease remains elusive. To address the association between XMRV infection and PCa, we have tested prostate tissues and human sera for the presence of viral DNA, viral antigens and anti-XMRV antibodies.

Results

Real-time PCR analysis of 110 PCa (Gleason scores >4) and 40 benign and normal prostate tissues identified six positive samples (5 PCa and 1 non-PCa). No statistical link was observed between the presence of proviral DNA and PCa, PCa grades, and the RNASEL R462Q mutation. The amplified viral sequences were distantly related to XMRV, but nearly identical to endogenous MLV sequences in mice. The PCR positive samples were also positive for mouse mitochondrial DNA by nested PCR, suggesting contamination of the samples with mouse DNA. Immuno-histochemistry (IHC) with an anti-XMRV antibody, but not an anti-MLV antibody that recognizes XMRV, sporadically identified antigen-positive cells in prostatic epithelium, irrespectively of the status of viral DNA detection. No serum (159 PCa and 201 age-matched controls) showed strong neutralization of XMRV infection at 1:10 dilution.

Conclusion

The lack of XMRV sequences or strong anti-XMRV neutralizing antibodies indicates no or very low prevalence of XMRV in our cohorts. We conclude that real-time PCR- and IHC-positive samples were due to laboratory contamination and non-specific immune reactions, respectively.  相似文献   

18.
Williams DK  Galvin TA  Ma H  Khan AS 《Biologicals》2011,39(6):378-383
Xenotropic murine leukemia virus-related virus (XMRV) was discovered in human prostate tumors and later in some chronic fatigue syndrome (CFS) patients. However, subsequent studies have identified various sources of potential contamination with XMRV and other murine leukemia virus (MLV)-related sequences in test samples. Biological and nucleotide sequence analysis indicates that XMRV is distinct from known xenotropic MLVs and has a broad host range and cell tropism including human cells. Therefore, it is prudent to minimize the risk of human exposure to infection by evaluating XMRV contamination in cell lines handled in laboratory research and particularly those used in the manufacture of biological products. Nested DNA PCR assays were optimized for investigating XMRV gag and env sequences in various cell lines, which included MRC-5, Vero, HEK-293, MDCK, HeLa, and A549, that may be used in the development of some vaccines and other cell lines broadly used in research. The sensitivity of the DNA PCR assays was <10 copies in approximately 1.8 x 105 cells equivalent of human DNA. The results indicated the absence of XMRV in the cell lines tested; although in some cases DNA fragments identified as cellular sequences were seen following the first round of PCR amplification with the env primer pair.  相似文献   

19.
Membrane cholesterol plays an important role in replication of HIV-1 and other retroviruses. Here, we report that the gammaretrovirus XMRV requires cholesterol and lipid rafts for infection and replication. We demonstrate that treatment of XMRV with a low concentration (10 mM) of 2-hydroxypropyl-β-cyclodextrin (2OHpβCD) partially depleted virion-associated cholesterol resulting in complete inactivation of the virus. This effect could not be reversed by adding cholesterol back to treated virions. Further analysis revealed that following cholesterol depletion, virus-associated Env protein was significantly reduced while the virions remained intact and retained core proteins. Increasing concentrations of 2OHpβCD (≥20 mM) resulted in loss of the majority of virion-associated cholesterol, causing disruption of membrane integrity and loss of internal Gag proteins and viral RNA. Depletion of cholesterol from XMRV-infected cells significantly reduced virus release, suggesting that cholesterol and intact lipid rafts are required for the budding process of XMRV. These results suggest that unlike glycoproteins of other retroviruses, the association of XMRV glycoprotein with virions is highly dependent on cholesterol and lipid rafts.  相似文献   

20.
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a new human retrovirus associated with prostate cancer and chronic fatigue syndrome. The causal relationship of XMRV infection to human disease and the mechanism of pathogenicity have not been established. During retrovirus replication, integration of the cDNA copy of the viral RNA genome into the host cell chromosome is an essential step and involves coordinated joining of the two ends of the linear viral DNA into staggered sites on target DNA. Correct integration produces proviruses that are flanked by a short direct repeat, which varies from 4 to 6 bp among the retroviruses but is invariant for each particular retrovirus. Uncoordinated joining of the two viral DNA ends into target DNA can cause insertions, deletions, or other genomic alterations at the integration site. To determine the fidelity of XMRV integration, cells infected with XMRV were clonally expanded and DNA sequences at the viral-host DNA junctions were determined and analyzed. We found that a majority of the provirus ends were correctly processed and flanked by a 4-bp direct repeat of host DNA. A weak consensus sequence was also detected at the XMRV integration sites. We conclude that integration of XMRV DNA involves a coordinated joining of two viral DNA ends that are spaced 4 bp apart on the target DNA and proceeds with high fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号