首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.  相似文献   

2.
《Journal of molecular biology》2019,431(21):4354-4367
To develop an antibody (Ab) therapeutic against staphylococcal enterotoxin B (SEB), a potential incapacitating bioterrorism agent and a major cause of food poisoning, we developed a “class T" anti-SEB neutralizing Ab (GC132) targeting an epitope on SEB distinct from that of previously developed “class M" Abs. A systematic engineering approach was applied to affinity-mature Ab GC132 to yield an optimized therapeutic candidate (GC132a) with sub-nanomolar binding affinity. Mapping of the binding interface by hydrogen–deuterium exchange coupled to mass spectrometry revealed that the class T epitope on SEB overlapped with the T-cell receptor binding site, whereas other evidence suggested that the class M epitope overlapped with the binding site for the major histocompatibility complex. In the IgG format, GC132a showed ∼ 50-fold more potent toxin-neutralizing efficacy than the best class M Ab in vitro, and fully protected mice from lethal challenge in a toxic shock post-exposure model. We also engineered bispecific Abs (bsAbs) that bound tetravalently by utilizing two class M binding sites and two class T binding sites. The bsAbs displayed enhanced toxin neutralization efficacy compared with the respective monospecific Ab subunits as well as a mixture of the two, indicating that enhanced efficacy was due to heterotypic tetravalent binding to two non-overlapping epitopes on SEB. Together, these results suggest that class T anti-SEB Ab GC132a is an excellent candidate for clinical development and for bsAb engineering.  相似文献   

3.
《MABS-AUSTIN》2013,5(5):820-828
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (?30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.  相似文献   

4.
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (˜30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.  相似文献   

5.
Botulinum neurotoxin (BoNT) potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC) in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP) to link biotinylated molecules to glycophorin A (GPA) on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.  相似文献   

6.
Experiments were conducted on 100 rabbits with asscending, hematogenic and cerebral tetanus caused by the administration of tetanus toxin (1 Dcl). The therapeutic efficacy of "Diaferm-3" antitoxin was compared depending on the route--intracysternal or intralumbar--of its administration (400 IU/kg). Intracysternal antitoxin administration proved to be thrice as effective as the intralumbar one (31.4 and 10.2% of the sick animals recovered, respectively). The latter route was effective only in animals with the ascending intoxication, this apparently being connected with the site of entrance of the toxin into the central nervous system by the peripheral nerves of the hind limbs.  相似文献   

7.
An enzyme-linked immunosorbent assay (ELISA) has been developed for the measurement of tetanus antitoxin in human sera as an alternative to the toxin neutralization test in mice, the currently accepted method of assay. The ELISA was found to be simple and quick to perform and required only small amounts of materials. In addition, the assay was found to give reproducible estimates of antitoxin levels and to measure antitoxin at levels as low as 0.01 IU per ml, a sensitivity similar to that of the neutralization test. Furthermore, a comparison of the results of the ELISA and the neutralization test involving 80 human sera, including sera with both high and low antitoxin levels, showed close agreement in antitoxin levels obtained by the two methods. It was concluded that ELISA was an acceptable alternative to the toxin neutralization test in mice for the measurement of tetanus antitoxin levels in human sera.  相似文献   

8.
We have identified and characterized nine antigenic epitopes on the E envelope of Japanese encephalitis virus (JEV) by using mAb. Passive administration of most of the anti-JEV mAb protected mice from i.v. challenge with 1.5 x 10(3) plaque-forming units of JEV, JaGAr-01 strain. Some mAb, which possess high neutralization activity in vitro, showed high protection, and JEV-specific N mAb 503 was found the most protective. Even an injection of 2.5 micrograms/mouse of mAb 503 protected all mice from JEV infection. Furthermore, an injection of about 200 micrograms of mAb 503 on day 5 postinfection protected 82% of the mice, even when JEV was detected in more than 85% of the infected mouse brains. Synergism of protection was observed with mixtures of several mAb directed against different epitopes. Although in a murine macrophage cell line, all of the mAb groups showed antibody-dependent enhancement (ADE) of JEV infectivity in vitro, and only two flavivirus cross-reactive mAb groups showed ADE of dengue virus type 2. The ADE of JEV by mAb seems not to be harmful for in vivo protection experiments, except for two mAb groups: mAb 302 and 201 showed little or no protective activity against JEV infection and, rather, caused early death in infected mice.  相似文献   

9.
Upon immunization of mice with a mAb (290A-167) directed against an epitope of Lol p I (the major allergenic determinant of Lolium perenne), both anti-idiotypic (aId) mAb (Ab2) and anti-aId mAb (Ab3) were produced. The Ab2 displayed the following internal image properties of Lol p I: it can be affinity-purified on an immobilized Id column; its binding to the anti-Lol p I mAb (290A-167) is inhibited by Lol p I; it inhibits in a dose-response fashion the binding of the specific Id to Ag. It is recognized by anti-Lol p I antisera from different species such as mouse, human, and goat. The Ab3 which binds to Lol p I was also produced from the same fusion. This binding was inhibited significantly by aId mAb (Ab2), anti-Lol p I mAb (290A-167) and Lol p I. These data indicate that the two mAb with specificity for Lol p I (290A-167 and Ab3) share similar reactivity to the Ag and that aId mAb is the internal image of the epitope recognized by the Id. We showed also that the capacity of rabbit aId Ab directed against the 290A-167 Id to inhibit the binding of Ab1 and Ab3 to Ag was almost abolished by passage over a Ab3-coated Sepharose column. This would suggest that not only are the two mAb with reactivity to Lol p I (Ab1 and Ab3) directed against identical epitopes, but that they in fact shared identical idiotopes as well. The production of identical mAb upon immunization with either the Ag or the aId mAb supports that the conceptual framework proposed by Jerne finds its biologic application in the course of an immune response.  相似文献   

10.
Botulinum toxins, i.e. BoNT/A to/G, include the most toxic substances known. Since botulism is a potentially fatal neuroparalytic disease with possible use as a biowarfare weapon (Centers for Disease Control and Prevention category A bioterrorism agent), intensive efforts are being made to develop vaccines or neutralizing antibodies. The use of active fragments from non-human immunoglobulins (F(ab'')2, Fab'', scFv), chemically modified or not, may avoid side effects, but also largely modify the in vivo half-life and effectiveness of these reagents. We evaluated the neutralizing activity of several monoclonal anti-BoNT/A antibodies (mAbs). F(ab'')2 fragments, native or treated with polyethyleneglycol (PEG), were prepared from selected mAbs to determine their half-life and neutralizing activity as compared with the initial mAbs. We compared the protective efficiency of the different biochemical forms of anti-toxin mAbs providing the same neutralizing activity. Among fourteen tested mAbs, twelve exhibited neutralizing activity. Fragments from two of the best mAbs (TA12 and TA17), recognizing different epitopes, were produced. These two mAbs neutralized the A1 subtype of the toxin more efficiently than the A2 or A3 subtypes. Since mAb TA12 and its fragments both exhibited the greatest neutralizing activity, they were further evaluated in the therapeutic experiments. These showed that, in a mouse model, a 2- to 4-h interval between toxin and antitoxin injection allows the treatment to remain effective, but also suggested an absence of correlation between the half-life of the antitoxins and the length of time before treatment after botulinum toxin A contamination. These experiments demonstrate that PEG treatment has a strong impact on the half-life of the fragments, without affecting the effectiveness of neutralization, which was maintained after preparation of the fragments. These reagents may be useful for rapid treatment after botulinum toxin A contamination.  相似文献   

11.
In cultured human lung fibroblasts treated with Clostridium difficile cytotoxin, the latency before appearance of the cytopathogenic effect was dose-related with a minimum of 45 min. At 37 degrees C, the toxin was accessible on all cells to inactivation with trypsin or neutralization with antitoxin during the first tenth of the latency. At 0 degrees C, the toxin was accessible considerably longer. The cytopathogenic effect was reversibly prevented by the lysosomotropic agents chloroquine and ammonium chloride, which had to be added within one-fifth of the latency to protect all cells. In the presence of chloroquine, but not of ammonium chloride, the time period during which the toxin remained amenable to neutralization with antitoxin was prolonged. The protective effect of ammonium chloride was not influenced by dropping the extracellular pH to 4.5, but that of chloroquine was abolished. The expression of the intoxication was not affected by inhibitors of the DNA, RNA or protein synthesis. Inhibitors of the energy metabolism prevented the cytopathogenic effect when added before the last phase of the latency. The results suggest that expression of the cytopathogenic effect requires internalization of the toxin, and that metabolic energy but no macromolecular synthesis is needed for the action of the toxin after this internalization.  相似文献   

12.
Pseudomonas toxin inhibited protein synthesis in mouse LM fibroblast monolayers. Incubation of toxin with LM cell monolayers resulted in a depletion of functional elongation factor 2. The initial interaction of pseudomonas toxin with mouse LM cells was rapid; within 2.5 min, toxin was rendered inaccessible to neutralization with specific pseudomonas antitoxin. At 4°C toxin adsorbed to the cell surface, but remained at a site where it could be neutralized with antitoxin. Ammonium chloride (20 mM) rendered LM cells insensitive to the action of toxin. The ammonium salt did not prevent adsorption of toxin to the cell membrane; rather, it appeared to maintain toxin at a site amenable to antitoxin neutralization.  相似文献   

13.
Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from “pre-pore” to its SDS and heat-resistant “pore” conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes.  相似文献   

14.
Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.  相似文献   

15.
Grover SS  Negi SS  Singh S  Ray K 《Biologicals》2012,40(4):262-265
The level of circulating tetanus toxin, antitoxin and their individual influence on the outcome of tetanus cases were determined in unimmunized 125 neonatal and 39 infant cases of tetanus. PHA (passive haemagglutination) test showed 40% positive cases for toxin while its absence in the remaining cases indicated of either toxin fixation to the central nervous system (CNS) or it got neutralized by antitoxin. TN (toxin neutralization) and PHA test carried out in 46 sera samples revealed a strong positive correlation (r = 0.9) showing that 35/46 (76%) and 38/46 (82.6%) samples were positive for antitoxin, respectively. 25.4% of the neonate and infant cases and 34% of the control group had a protective serum tetanus antitoxin level. 42.5% of the paired sera from unimmunized mothers and their neonates showing nonprotective antitoxin levels suggested that a high level of antitoxin is needed for transplacental transfer, although transfer may not play a decisive role in the resistance against the disease. The presence of toxin or antitoxin in the clinical cases did not affect the outcome of the disease, although in neonates, presence of toxin was found to be a bad prognostic sign. This study explicitly advocates for the need to improve the vaccination coverage strategy.  相似文献   

16.
In cultured human lung fibroblasts treated with Clostridium difficile cytotoxin, the latency before appearance of the cytopathogenic effect was dose-related with a minimum of 45 min. At 37°C, the toxin was accessible on all cells to inactivation with trypsin or neutralization with antitoxin during the first tenth of the latency. At 0°C, the toxin was accessible considerably longer. The cytopathogenic effect was reversibly prevented by the lysosomotropic agents chloroquine and ammonium chloride, which had to be added within one-fifth of the latency to protect all cells. In the presence of chloroquine, but not of ammonium chloride, the time period during which the toxin remained amenable to neutralization with antitoxin was prolonged. The protective effect of ammonium chloride was not influenced by dropping the extracellular pH to 4.5, but that of chloroquine was abolished. The expression of the intoxication was not affected by inhibitors of the DNA, RNA or protein synthesis. Inhibitors of the energy metabolism prevented the cytopathogenic effect when added before the last phase of the latency. The results suggest that expression of the cytopathogenic effect requires internalization of the toxin, and that metabolic energy but no macromolecular synthesis is needed for the action of the toxin after this internalization.  相似文献   

17.
Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. Potential use of BoNT as a biothreat agent has made development of sensitive assays for toxin detection and potent antitoxin for treatment of intoxication a high priority. To improve detection and treatment of botulism, molecular evolution and yeast display were used to increase the affinity of two neutralizing single chain Fv (scFv) antibodies binding BoNT serotype A (BoNT/A). Selection of yeast displayed scFv libraries was performed using methods to select for both increased association rate constant (k(on)) and decreased dissociation rate constants (k(off)). A single cycle of error prone mutagenesis increased the affinity of the 3D12 scFv 45-fold from a K(D) of 9.43x10(-10)M to a K(D) of 2.1x10(-11)M. Affinity of the HuC25 scFv was increased 37-fold from 8.44x10(-10)M to 2.26x10(-11)M using libraries constructed by both random and site directed mutagenesis. scFv variable region genes were used to construct IgG for use in detection assays and in vivo neutralization studies. While IgG had the same relative increases in affinity as scFv, (35-fold and 81-fold, respectively, for 3D12 and HuC25) higher solution equilibrium binding constants were observed for the IgG, with the 3D12 K(D) increasing from 6.07x10(-11)M to 1.71x10(-12)M and the HuC25 K(D) increasing from 4.51x10(-11)M to 5.54x10(-13)M. Affinity increased due to both an increase in k(on), as well as slowing of k(off). Higher affinity antibodies had increased sensitivity, allowing detection of BoNT/A at concentrations as low as 1x10(-13)M. The antibodies will also allow testing of the role of affinity in in vivo toxin neutralization and could lead to the generation of more potent antitoxin.  相似文献   

18.
19.
Although the structural basis of internal images borne by beta type monoclonal anti-idiotypic antibody (Ab2) begins to be elucidated, there is little information on the repertoire of epitopes which make up the internal images expressed by polyclonal Ab2. We addressed this question by using a two-way approach in the angiotensin II (AII)-related idiotypic network, a system characterized by common occurrence of internal images on rabbit Ab2. First, two sets of internal images were purified in parallel by affinity chromatography on Sepharose 4B covalently linked to either mAb 110 (S4B-110), a mAb specific for a phenylalanine requiring carboxy terminus epitope (Phe8) on AII, or mAb 133 (S4B-133), reactive with a more central epitope also expressed on Phe8 substituted peptide analogs. The respective eluates, EL1 110 and E11 133, exhibited only partially overlapping reactivity, as demonstrated by 1) a different pattern of inhibition by various AII peptide analogues of EL1 110 and E11 133 binding to the same anti-AII antibody (Ab1) (either the homologous polyclonal Ab1 102 or mAb 133), 2) and a distinct profile of EL1 110 and EL1 133 binding to 12 biotinylated monoclonal Ab1 identifying a variety of epitopes on AII. To analyze further the respective distribution of mAb 110 and mAb 133 defined epitopes on Ab2-beta molecules, Ab2 were submitted to sequential affinity chromatography on S4B-110 followed by S4B-133, and the fractionated internal images were characterized by the pattern of binding to the various monoclonal Ab1. It was thus possible to purify two Ab2-beta subpopulations that exclusively imaged the determinant identified by mAb 110 (ii 110) or that identified by mAb 133 (ii 133). A third subpopulation which was successively retained on S4B-110 and S4B-133 expressed both internal images (ii 110 + 133), and was additionally reactive with all the other monoclonal Ab1 tested. In any case, monoclonal Ab1 binding to the different sets of internal images was totally inhibited by an excess of AII. These results indicate that the repertoire of internal epitopes is similar to that of the nominal Ag, but is scattered over distinct subpopulations of Ab2-beta molecules that can be fractionated by affinity chromatography. Some of the latter seem to bear several epitopes and resemble the whole nominal Ag, whereas others appear to image only one determinant. Second, we raised 7 anti-anti-idiotypic mAb (monoclonal Ab3) against affinity-purified Ab2-beta and analyzed their fine specificity for AII.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In the USA, the potency of commercially prepared equine tetanus antitoxin is determined by the method outlined in the Code of Federal Regulations, Title 9, Part 113.451. In the current test, commercial equine tetanus antitoxin is tested by a toxin neutralization test in guinea pigs. The in vivo test measures antitoxin content through effectiveness of protection of guinea pigs injected with diluted mixtures of antitoxin and a standard toxin. A competitive enzyme-linked immunosorbent assay, designed as an in vitro alternative to the in vivo test, measures antitoxin content based on a competitive reaction between standard or unknown serum and murine monoclonal antibody specific for tetanus toxin. The monoclonal antibody used in the assay delayed death in mouse passive protection studies and reacted with the C fragment of tetanus toxin. No cross-reaction was observed when the antibody was tested with the toxins of Clostridium chauvoei, C. novyi, C. perfringens, or C. sordellii. The in vitro test will measure the antitoxin content of serum samples containing 100-1500 units of antitoxin. Tetanus antitoxin titers obtained by the competitive enzyme-linked immunosorbent assay compared favorably with the toxin neutralization test conducted in guinea pigs. The in vitro assay serves as a feasible alternative to the in vivo test because it can be completed in less time, is reproducible, and eliminates the use of test animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号