首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li  Jianxiong  Bu  Yujie  Li  Bin  Zhang  Hailin  Guo  Jia  Hu  Jianping  Zhang  Yanfang 《Journal of molecular histology》2022,53(4):713-727
Journal of Molecular Histology - Calenduloside E (CE) isolated from Aralia elata (Miq.) Seem. is a natural triterpenoid saponin that can reportedly ameliorate myocardial ischemia/reperfusion...  相似文献   

3.
异丙酚对全脑缺血/再灌注大鼠海马iNOS表达的影响   总被引:1,自引:0,他引:1  
目的观察异丙酚对全脑缺血/再灌注大鼠海马神经元诱导型一氧化氮合酶(iNOS)表达的影响,探讨异丙酚对迟发性脑神经元损伤保护作用机制。方法采用Pulsinelli-Brierley四血管阻断法制备全脑缺血模型。全脑缺血20min再灌注24h后断头取脑,采用Western blot方法检测大鼠海马iNOS的蛋白表达。结果与缺血/再灌注组相比较,异丙酚处理组大鼠海马iNOS蛋白表达明显降低,存活的神经元数目明显增加,统计结果差异均有显著性(P<0.05或0.01)。结论异丙酚通过抑制iNOS蛋白表达对大鼠脑迟发性神经元损伤起保护作用。  相似文献   

4.
5.
目的: 观察中风胶囊对脑缺血/再灌注损伤(CIRI)模型鼠脑组织自噬相关蛋白表达的影响,初步揭示其对神经元损伤保护的分子机制。方法: 采用改良线栓法构建大鼠脑缺血/再灌注损伤模型,随机将60只雄性SD大鼠分为假手术组、模型组、丁苯酞组(0.054 g/kg)、中风胶囊高剂量组(1.08 g/kg)、中风胶囊中剂量组(0.54 g/kg)、中风胶囊低剂量组(0.27 g/kg),每组10只。造模结束后灌胃给药10 d,每天1次,实验结束后处死各组大鼠,摘取脑组织。各组大鼠末次给药24 h后进行神经功能评分;HE染色法观察各组大鼠脑组织病理形态;ELISA法检测各组大鼠血清雌二醇(E2)和卵泡刺激素(FSH);RT-PCR法与Western blot法分别测定各组大鼠脑组织PI3K/Akt/Beclin1信号通路关键基因及蛋白的表达。结果: 与假手术组比较,模型组大鼠体重及脑组织中p-PI3K、p-Akt等蛋白表达均显著降低,脑指数、神经功能缺损评分及脑组织Beclin1、LC3基因和蛋白表达均显著升高(P<0.05或P<0.01),脑组织结构排列疏松,间质水肿,神经细胞呈三角形,核固缩深染。与模型组相比,中风胶囊高剂量组大鼠体重显著升高,神经功能缺损评分显著下降(P<0.05),脑组织病理损伤较模型组明显改善;中风胶囊各剂量组的脑指数及脑组织Beclin1、LC3的基因和蛋白表达均显著降低,脑组织中p-PI3K、p-Akt等蛋白表达均显著升高(P<0.05或P<0.01)。结论: 中风胶囊通过调控PI3K/Akt/Beclin1信号通路中Beclin1和LC3的表达来抑制CIRI模型鼠的自噬反应,从而发挥保护其脑神经元损伤的作用。  相似文献   

6.
Renal ischemia/reperfusion (I/R) injury resulting in acute renal failure, is a major clinical problem due to its high mortality rate. Renal I/R increases the reactive oxygen species, secretion of inflammatory cytokines, chemokines and other factors. This suggests that initiating the apoptosis process in the presence of oxidative stress may play a role in life-threatening conditions, such as ischemia. Ischemia reperfusion-induced renal damage can result in renal failure and death. Although many treatment procedures have been carried out to reduce or destroy renal I/R damage in experimental models, so far, a routine method of treatment has not yet been found. For this reason, the current study was planned to investigate the possible protective effects of evodiamine on tissue damage caused by ischemia-reperfusion in kidney tissue in rats and an experimental renal I/R model was used for this purpose. Four groups were formed in the study: the control, sham control, ischemia reperfusion (I/R), and evodiamine (10 mg/kg) + I/R groups. The effects of evodiamine against kidney I/R injury were investigated. TAS (total oxidant status), TOS (total oxidant status), interleukin-1β (IL-1β), IL-6, IL-10 and tumor necrosis factor-α levels were determined by enzyme-linked immunosorbent assay. The oxidative stress index was calculated from TAS and TOS levels. In addition, the renal ischemia reperfusion injury was examined histopathologically. The IL-10 and TAS levels in the I/R group decreased when compared with the control and Sham groups, while these levels increased in the evodiamine group. Histopathologic examination revealed that caspase 3 and nuclear factor-κB levels decreased in the evodiamine group compared with the I/R group. The application of evodiamine significantly reduced ischemia reperfusion-induced kidney damage due to its antioxidant, anti-inflammatory and antiapoptotic properties.  相似文献   

7.
目的:探讨产前应激对雄性子代大鼠大脑中动脉缺血/再灌注后星形胶质细胞的影响。方法:SD孕鼠随机分为有产前应激处理(妊娠第15到21天每日3次限制活动)和无产前应激处理,并对其雄性子代大鼠采用线栓法制备大脑中动脉闭塞(MCAO)模型,共分为产前应激+假手术组、MCAO模型组、产前应激+MCAO组(n=10),于再灌注后第5天检测脑梗死体积,免疫荧光双标染色检测缺血灶边缘区星形胶质细胞形态及促红细胞生成素肝细胞受体A4(EphA4)和胶质纤维酸性蛋白(GFAP)的共表达情况,并采用Western blot检测EphA4、GFAP和神经蛋白聚糖(Neurocan)蛋白表达。结果:产前应激+MCAO组子代大鼠脑梗死体积百分比、EphA4、GFAP和Neurocan蛋白表达均较MCAO组显著增加(P均<0.05),且GFAP阳性细胞形态学改变及EphA4/GFAP共表达也较MCAO组明显。结论:产前应激可能改变子代大鼠脑缺血/再灌注后星形胶质细胞上EphA4受体的表达,促进星形胶质细胞活化,产生神经蛋白聚糖。  相似文献   

8.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

9.
Plasma adiponectin level is significantly reduced in patients with metabolic syndrome, and vascular dysfunction is an important pathological event in these patients. However, whether adiponectin may protect endothelial cells and attenuate endothelial dysfunction caused by metabolic disorders remains largely unknown. Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd; 2 mug/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91(phox) expression, and endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) activity/expression was determined. Severe endothelial dysfunction (maximal vasorelaxation in response to ACh: 70.3 +/- 3.3 vs. 95.2 +/- 2.5% in control, P < 0.01) was observed in hyperlipidemic aortic segments, and treatment with gAd significantly improved endothelial function (P < 0.01). Paradoxically, total NO production was significantly increased in hyperlipidemic vessels, and treatment with gAd slightly reduced, rather than increased, total NO production in these vessels. Treatment with gAd reduced (-78%, P < 0.01) superoxide production and peroxynitrite formation in hyperlipidemic vascular segments. Moreover, a moderate attenuation (-30%, P < 0.05) in gp91(phox) and iNOS overexpression in hyperlipidemic vessels was observed after gAd incubation. Treatment with gAd had no effect on eNOS expression but significantly increased eNOS phosphorylation (P < 0.01). Most noticeably, treatment with gAd significantly enhanced eNOS (+83%) but reduced iNOS (-70%, P < 0.01) activity in hyperlipidemic vessels. Collectively, these results demonstrated that adiponectin protects the endothelium against hyperlipidemic injury by multiple mechanisms, including promoting eNOS activity, inhibiting iNOS activity, preserving bioactive NO, and attenuating oxidative/nitrative stress.  相似文献   

10.
The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.  相似文献   

11.
《Free radical research》2013,47(8):555-568
Abstract

Ischemia/reperfusion (I/R) injury associated with hepatic resections and liver transplantation remains a serious complication in clinical practice, despite several attempts to solve the problem. The redox balance, which is pivotal for normal function and integrity of tissues, is dysregulated during I/R, leading to an accumulation of reactive oxygen species (ROS). Formation of ROS and oxidant stress are the disease mechanisms most commonly invoked in hepatic I/R injury. The present review examines published results regarding possible sources of ROS and their effects in the context of I/R injury. We also review the effect of oxidative stress on marginal livers, which are more vulnerable to I/R-induced oxidative stress. Strategies to improve the viability of marginal livers could reduce the risk of dysfunction after surgery and increase the number of organs suitable for transplantation. The review also considers the therapeutic strategies developed in recent years to reduce the oxidative stress induced by hepatic I/R, and we seek to explain why some of them have not been applied clinically. New antioxidant strategies that have yielded promising results for hepatic I/R injury are discussed.  相似文献   

12.
目的:探讨小檗碱对大鼠脑缺血/再灌注损伤的保护作用及免疫机制。方法:50只SD大鼠随机分为假手术组(Sham group)、模型组(Model group)、小檗碱低剂量组(BBR-L,25 mg/kg)、小檗碱中剂量组(BBR-M,50 mg/kg)、小檗碱高剂量组(BBR-H,100 mg/kg),每组各10只。采用Longa线栓法建立脑缺血/再灌注大鼠模型,缺血2h后再灌注24 h处理。于造模成功2 h后灌胃给药,假手术组和模型组组按上述方法同体积给予生理盐水。给药24 h后,测定各组大鼠神经功能缺损程度评分及脑梗死率;采用ELISA法检测抗氧化酶SOD和GSH-Px的活性、细胞因子TNF-α、IFN-β、IL-6和NO的含量;采用流式细胞术检测CD4+、CD8+及CD4+/CD8+血清含量;进一步采用RT-qPCR与Western blot技术检测大鼠脑组织内NF-κB-NLRP3信号轴关键基因及蛋白的表达情况。结果:与假手术组比较,模型组大鼠神经功能缺损程度、脑梗死率均升高(P<0....  相似文献   

13.
Hou  Lijing  Li  Shuang  Li  Shasha  Wang  Ru  Zhao  Mengke  Liu  Xiaomin 《Journal of physiology and biochemistry》2023,79(1):133-146
Journal of Physiology and Biochemistry - Current therapies are of limited efficacy in cerebral ischemia/reperfusion (I/R) injury. Based on the important role of oxidative stress in cerebral I/R...  相似文献   

14.
15.
Mitochondrial targets of oxidative stress during renal ischemia/reperfusion   总被引:7,自引:0,他引:7  
Endogenous tyrosine nitration and inactivation of manganese superoxide dismutase (MnSOD) has previously been shown to occur in both human and rat chronic renal allograft rejection. To elucidate the time course of MnSOD inactivation and mitochondrial dysfunction at earlier times during renal transplantation, we developed a rodent model of renal ischemia/reperfusion (I/R). Renal function was significantly impaired at 16 h reperfusion following 30 min of warm ischemia. Tyrosine nitration of specific mitochondrial proteins, MnSOD and cytochrome c, occurred at the earliest time point examined, an event that preceded significant renal injury. Interestingly, a small percentage of both mitochondrial proteins were also located in the cytosol. This leakage and decreased adenosine 5(')-triphosphate levels indicate loss of mitochondrial membrane integrity during renal I/R. Inactivation of MnSOD occurred rapidly in this model of renal I/R, suggesting that loss of MnSOD activity leads to further renal injury and nitration of other mitochondrial targets.  相似文献   

16.
Testicular torsion and detorsion (TTD) is a serious urological condition affecting young males that is underlined by an ischemia reperfusion injury (tIRI) to the testis as the pathophysiological mechanism. During tIRI, uncontrolled production of oxygen reactive species (ROS) causes DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to explore whether inhibition of NADPH oxidase (NOX), a major source of intracellular ROS, will prevent tIRI-induced GCA and its association with endoplasmic reticulum (ER) stress. Sprague-Dawley rats (n = 36) were divided into three groups: sham, tIRI only and tIRI treated with apocynin (a NOX inhibitor). Rats undergoing tIRI endured an ischemic injury for 1 h followed by 4 h of reperfusion. Spermatogenic damage was evaluated histologically, while cellular damages were assessed using real time PCR, immunofluorescence staining, Western blot and biochemical assays. Disrupted spermatogenesis was associated with increased lipid and protein peroxidation and decreased antioxidant activity of the enzyme superoxide dismutase (SOD) as a result of tIRI. In addition, increased DNA double strand breaks and formation of 8-OHdG adducts associated with increased phosphorylation of the DNA damage response (DDR) protein H2AX. The ASK1/JNK apoptosis signaling pathway was also activated in response to tIRI. Finally, increased immuno-expression of the unfolded protein response (UPR) downstream targets: GRP78, eIF2-α1, CHOP and caspase 12 supported the presence of ER stress. Inhibition of NOX by apocynin protected against tIRI-induced GCA and ER stress. In conclusion, NOX inhibition minimized tIRI-induced intracellular oxidative damages leading to GCA and ER stress.  相似文献   

17.
Apolipoprotein A-I (ApoA-I), the major protein component of serum high-density lipoprotein (HDL), exhibits its anti-inflammatory activity in inflammatory responses. As renal inflammation plays an important role in ischemia/reperfusion (I/R) injury of the kidney, the aim of this study was to investigate the beneficial effect of ApoA-I on renal I/R injury in rats and the underlined mechanism. Using rats subjected to renal I/R by occlusion of bilateral renal pedicles, we found that administration of ApoA-I significantly reduced serum creatinine levels, serum TNF-α and IL-1β levels as well as tissue myeloperoxidase (MPO) activity, compared with I/R controls. Moreover, ApoA-I treatment suppresses the expression of intercellular adhesion molecules-1 (ICAM-1) and P-selectin on endothelium, thus diminishing neutrophil adherence and the subsequent tissue injury. These results showed that ApoA-I reduced I/R-induced inflammatory responses, decreased renal microscopic damage and improved renal function. It seems likely that ApoA-I protects kidney from I/R injury by inhibiting inflammatory cytokines release and neutrophil infiltration and activation.  相似文献   

18.
We have recently showed that molecular hydrogen has great potential for selectively reducing cytotoxic reactive oxygen species, such as hydroxyl radicals, and that inhalation of hydrogen gas decreases cerebral infarction volume by reducing oxidative stress [I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-I. Katsura, Y. Katayama, S. Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med., 13 (2007) 688-694]. Here we show that the inhalation of hydrogen gas is applicable for hepatic injury caused by ischemia/reperfusion, using mice. The portal triad to the left lobe and the left middle lobe of the liver were completely occluded for 90min, followed by reperfusion for 180min. Inhalation of hydrogen gas (1-4%) during the last 190min suppressed hepatic cell death, and reduced levels of serum alanine aminotransferase and hepatic malondialdehyde. In contrast, helium gas showed no protective effect, suggesting that the protective effect by hydrogen gas is specific. Thus, we propose that inhalation of hydrogen gas is a widely applicable method to reduce oxidative stress.  相似文献   

19.
20.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号