首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The clouded leopard (Neofelis nebulosa) is an unusual medium-sized felid whose ecology in the wild is poorly known. Mainly famous for its large canines, it has often been an overlooked taxon in analyses of felid morphology and systematics or has proven aberrant and difficult to interpret. In this article I report on a number of unusual features in the clouded leopard skull hitherto considered characteristic of sabertooth felids exclusively, and, accordingly, universally believed to be absent in extant felids. The skull morphology of the clouded leopard sets it apart from other extant felids, and in a number of respects it approaches the morphology of primitive sabertooths. This indicates convergence of several characters in machairodontine felids and the clouded leopard, mainly as adaptations for attaining a large gape. This raises doubts about the characters hitherto considered as distinguishing sabertoothed from nonsabertoothed predators, and since no evidence at present suggests a different functional killing and feeding ecology in Neofelis, regardless of its unusual skull morphology, also whether primitive sabertoothed felids were functionally similar to advanced forms such as Homotherium, Megantereon, or Smilodon.  相似文献   

2.
The ability of sabretoothed felids to achieve sufficiently high bite forces for predation at extreme gape angles has been the subject of decades of debate. Previous studies have indicated that bite forces in derived sabretoothed felids would have been low, but that they were probably augmented by head depressing muscles. However, bite mechanics is a dynamic process, and mechanical properties change with changes in gape angles. In this study, I present the first comprehensive model of bite mechanics, vector angles, and forces about the temporomandibular joint at gape angles from occlusion to maximal inferred gape in sabretoothed felids. Primitive sabrecats (Machairodus, Paramachairodus) appear broadly comparable to extant large felids (Panthera, Puma), but derived sabrecats in the groups Homotherini (Amphimachairodus, Homotherium, Xenosmilus) and Smilodontini (Megantereon, Smilodon) are often substantially different from either of the former. The ability of the mandibular adductors to generate torque changes with gape angle, indicating that previous models fail to capture potentially important differences in bite function. Inferred muscle sizes and the angles of effective torque from individual adductor fibres in derived sabrecats are different from those of primitive sabrecats and extant large felids, but they had evolved a number of compensatory adaptations for maximizing force output at the canine and carnassial, primarily changes in muscle fibre angles and more compact crania. Inferred outforces at the canines and carnassials were comparable amongst all groups at low gape angles, but at extreme gape angles outforces would have been low, supporting previous hypotheses of head flexor contribution during initial stages of the killing bite in sabrecats. Mandibular adduction in extant carnivores is a complicated pattern of differences in twitch tension and electromyographical activity at different gape angles, and inference of maximal isotonic bite forces from reconstructed mandibular adductor sizes in fossils will give estimates primarily suitable for comparative purposes. Potentially, derived sabrecats could have evolved differences from extant felids in adductor histochemistry or pinnation angle of individual fibres. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 220–242.  相似文献   

3.
The body masses of the three large saber-toothed machairodontines, Smilodon gracilis, S. fatalis, and S. populator, were estimated on the basis of 36 osteological variables from the appendicular skeleton of extant felids. A new model is introduced that takes the reliability of the predictor equations into account, since mass estimates are more reliable when computed from multiple variables per bone. At a body mass range of 55-100 kg, S. gracilis was comparable in size to extant jaguars, and S. fatalis was found to be somewhat lighter than previously assumed, with a body mass range of 160-280 kg, similar to that of the largest extant felid, the Siberian tiger. Smilodon populator was substantially heavier and larger than any extant felid, with a body mass range of 220-360 kg. Particularly large specimens of S. populator almost certainly exceeded 400 kg in body mass. The differences from previous estimates are most likely caused by differences in the databases used for mass estimation.  相似文献   

4.
The cranial ontogeny of specialized mammals is relevant to the understanding of the connection of form and function in a developmental, ecological, and evolutionary context. As highly specialized carnivores, felids are of especial interest. We studied the postnatal ontogeny of the skull in Puma concolor (Mammalia: Carnivora: Felidae) using a quantitative approach. We interpreted our results in the light of a previous qualitative assessment of ontogenetic changes in the species. This represents one of the few integrative studies of skull development in any extant species of wild felids. We report patterns of multivariate allometry of 19 linear skull dimensions measured in 48 Argentine specimens. We examined the (jackknife resampled) departures from isometry as well as the interplay of isometric and allometric trends in shaping the puma skull. Both the qualitative and quantitative results indicate that the major ontogenetic changes are directly linked to cranial structures that support a developing masticatory apparatus and its associated jaw and neck musculature, which are essential for the action of canines and carnassials during the killing bite and slicing flesh. Sexual differences suggest allometric scaling (hypo- or hyper-morphosis) as key processes in the development of the puma skull.  相似文献   

5.
The sabertoothed felids were among the most unusual predators in the late Tertiary ecosystems, and the sabertooth morphology is regarded as being absent from the modern ecosystems. In recent years, the primitive Paramachairodus has become well known and has yielded much valuable information on the primitive skull morphology among sabercats, providing the first evidence-based scenarios for the evolution of skull morphology in later sabercats. However, comparison of craniomandibular morphology of the extant clouded leopard Neofelis nebulosa and Paramachairodus reveals numerous similarities and subsequent divergence from other extant great cats. In several key aspects, the clouded leopard has approached a primitive sabercat craniomandibular morphology and has diverged markedly from its sister group, the Panthera lineage. A primitive sabertooth condition arose six times in the Tertiary period, not five as is traditionally advocated. The clouded leopard appears to be a useful model for understanding primitive sabercat morphology and could shed important light on sabercat evolution. The unusual nature of the clouded leopard implies that increased efforts should be spent on insuring the continuing survival of this rare and endangered species. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Melanosuchus niger is a caimanine alligatorid widely distributed in the northern region of South America. This species has been the focus of several ecological, genetic and morphological studies. However, morphological studies have generally been limited to examination of interspecific variation among extant species of South American crocodylians. Here, we present the first study of intraspecific variation in the skull of M. niger using a two‐dimensional geometric morphometric approach. The crania of 52 sexed individuals varying in size were analysed to quantify shape variation and to assign observed shape changes to different types of intraspecific variation, that is, ontogenetic variation and sexual dimorphism. Most of the variation in this species is ontogenetic variation in snout length, skull depth, orbit size and the width of the postorbital region. These changes are correlated with bite force performance and probably dietary changes. However, a comparison with previous functional studies reveals that functional adaptations during ontogeny seem to be primarily restricted to the postrostral region, whereas rostral shape changes are more related to dietary shifts. Furthermore, the skulls of M. niger exhibit a sexual dimorphism, which is primarily size‐related. The presence of non‐size‐related sexual dimorphism has to be tested in future examinations.  相似文献   

7.
This study investigates the developmental bases of size and shape variation in papionin primates (Macaca, Cercocebus, Mandrillus, Lophocebus, and Papio). The analysis tests hypotheses predicting that heterochronic changes in ontogeny, particularly in the degree of overall size growth, can account for cranial diversity and "allometric scaling" in this clade. Large developmental samples of extant papionin crania are examined to test heterochronic hypotheses using bivariate allometric methods. Analyses indicate that the crania of larger papionins (Mandrillus and Papio) are generally peramorphic, surpassing size and shape ranges of smaller, and probably less-derived, macaques and mangabeys. At least two heterochronic processes, including acceleration and hypermorphosis, can account for this pattern. Ontogenetic changes include decoupling of growth and development among cranial regions, along with simple shifts in size. Allometric scaling has complex developmental bases. Size change itself is not sufficient to explain all developmental differences among papionins, but these changes are extremely important in comparisons within cranial regions such as the face. Results imply that Papio exhibits strongly derived patterns of brain growth that impact postnatal patterns of size and shape transformation. Consideration of these results in the context of recent socioecological analyses suggests that derived patterns of cranial growth in Papio may be a response to selection during the early periods of ontogeny, resulting in a distinctive life history pattern.  相似文献   

8.
Sexual dimorphism is widespread among carnivorans, and has been an important evolutionary factor in social ecology. However, its presence in sabertoothed felids remains contentious. Here we present a comprehensive analysis of extant Panthera and the sabertoothed felid Smilodon fatalis. S. fatalis has been reported to show little or no sexual dimorphism but to have been intraspecifically variable in skull morphology. We found that large and small specimens of S. fatalis could be assigned to male and female sexes with similar degrees of confidence as Panthera based on craniomandibular shape. P. uncia is much less craniomandibularly variable and has low levels of sexual size-dimorphism. Shape variation in S. fatalis probably reflects sexual differences. Craniomandibular size-dimorphism is lower in S. fatalis than in Panthera except P. uncia. Sexual dimorphism in felids is related to more than overall size, and S. fatalis and the four large Panthera species show marked and similar craniomandibular and dental morphometric sexual dimorphism, whereas morphometric dimorphism in P. uncia is less. Many morphometric-sexually dimorphic characters in Panthera and Smilodon are related to bite strength and presumably to killing ecology. This suggests that morphometric sexual dimorphism is an evolutionary adaptation to intraspecific resource partitioning, since large males with thicker upper canines and stronger bite forces would be able to hunt larger prey than females, which is corroborated by feeding ecology in P. leo. Sexual dimorphism indicates that S. fatalis could have been social, but it is unlikely that it lived in fusion-fission units dominated by one or a few males, as in sub-Saharan populations of P. leo. Instead, S. fatalis could have been solitary and polygynous, as most extant felids, or it may have lived in unisexual groups, as is common in P. leo persica.  相似文献   

9.
The relationship of carpal morphology to ecology and habitat is under studied in carnivorans and more generally in mammals. Here, we use 3D-scanning techniques to assess the usefulness of a carpal bone, the scapholunar, in carnivorans to reflect ecology and habitat, and to reconstruct the ecology of five extinct carnivorans from two fossil sites: Rancho La Brea and Natural Trap Cave. We 3D-scanned scapholunars and measured articular surface areas and angles between articular facets using GeoMagic and Rhino 3D-software. We analyzed the difference in these metrics using multivariate analysis of variance and discriminant function analysis. Results show that the scapholunar reflects ecological signal, with clear groupings of cursorial carnivorans and grappling/climbing carnivorans; however, phylogenetic signal was also present in the results with hyaenids, canids, and large felids in distinct morphospaces. Extinct species Miracinonyx trumani (American cheetah) and Smilodon fatalis (sabertooth cat) showed surprising results with M. trumani grouping with pantherines instead of Acinonyx or Puma, suggesting it runs but still retains the ability to grapple prey. S. fatalis groups with pantherines, but also shows some unique adaptations, suggesting it had a different range of wrist motion than living cats. Overall, the scapholunar is a good indicator of ecology and functional morphology and can be another tool to use in modern and fossil carnivorans to reconstruct extinct ecologies and locomotor behaviors.  相似文献   

10.
The late Pleistocene was a time of environmental change, culminating in an extinction event. Few fossil localities record a temporal series of carnivore fossil populations from this interesting interval as well as Rancho La Brea (RLB). We analysed mandibles of Smilodon fatalis from RLB using 2‐D geometric morphometrics to examine whether, and how, mandibular shape changes through time. Smilodon fatalis shows mandibular evolution with oscillations between a small, ancestral‐type morph in pits 77 (≈37 Kybp) and 2051 (≈26 Kybp), a larger, more derived morph in pits 91 (≈28 Kybp) and 61‐67 (≈13.6 Kybp), and an intermediate morph from pit 13 (≈17.7 Kybp). These oscillations end in pit 61‐67, with greatest body size, and are estimated to have its widest gape and lowest bite force. Additionally, variation is lowest in pit 61‐67, which was deposited concurrent with the Bølling–Allerød warming event, which may have important implications for the timing or conditions during the extinction event. Contra to a temporal Bergmann's rule, such rapid warming events appear to be correlated with larger, derived, morphologies whereas static, cooler, climates correlate with gracile, ancestral morphologies.  相似文献   

11.
Life reconstructions are a useful means of providing a package of information about morphology, functionality, behaviour, biology and ecological characteristics of an extinct organism. These reconstructions are of interest not only to researchers but also to a wider public. Reconstructions of sabretoothed cats in particular are widely published and exhibited, despite the absence of a general consensus on either how their canines were used or the prey sought. Cat-like restorations of the American Pleistocene sabretooth genus Smilodon prepared by Charles Knight under the direction of J.C. Merriam were accepted as valid for over three decades until GJ. Miller criticized them, claiming that Smilodon should have looked very different from modern felids. In particular, he argued for a longer mouth opening and lip line to provide a wider gape, a retracted nose and ears set relatively lower on a head with a straighter dorsal profile. These arguments were accepted by many authors employing reconstructions, and have lead to depictions of bizarre appearance and interpretations of rather specialized feeding behaviour. We believe that phylogenetic, anatomical and functional considerations point to substantial flaws in the basis for such depictions, and argue for a return to more felid-like morphology and to interpretations of broadly cat-like eating patterns.  相似文献   

12.
Synopsis Ontogenetic increases in mouth size and changes in dentition of percoid fishes may affect the size and species of prey selected, thus influencing the fundamental trophic niche. To examine the influence of oral anatomy on prey selectivity by pinfish, Lagodon rhomboides, and snook, Centropomus undecimalis, two co-occurring percoid fishes with contrasting mouth morphologies, the mouth size, dentition, stomach contents, and available prey during ontogeny were quantified. Based on the presence of prey fragments in stomach contents and direct behavioral observation, prey were categorized by the feeding mode used during capture (suction/ramfeeding or biting). Centropomus has a larger size-specific gape than Lagodon during all ontogenetic stages. Although both feeding modes were used by Lagodon during ontogeny, the amount of prey captured using suction/ram-feeding declined and the amount of prey captured by biting increased with standard length. This change in feeding mode was associated with a change in incisor shape and width: Lagodon < 39 mm SL possessed narrow, pointed incisors and strongly selected amphipods, which are captured using suction/ram-feeding; Lagodon> 40 mm SL possessed wide, flat-topped incisors and significantly increased their selectivity for polychaetes, which are captured by biting. Centropomus used ram-feeding to capture prey at all ontogenetic stages. Size-selective feeding by Centropomus was apparent but could not be due to gape-limitation alone, because average prey body depth was only 45% of gape and was not proportional to absolute mouth size increase during ontogeny. Dietary diversity was greatest during the transition from suction/ram-feeding to biting in Lagodon. Lagodon had a higher dietary diversity at all ontogenetic stages than Centropomus, due in part to Lagodon's use of multiple feeding modes.  相似文献   

13.
Lemurs are notable for encompassing the range of body‐size variation for all primates past and present—close to four orders of magnitude. Benefiting from the phylogenetic proximity of subfossil lemurs to smaller‐bodied living forms, we employ allometric data from the skull to probe the ontogenetic bases of size differentiation and morphological diversity across these clades. Building upon prior pairwise comparisons between sister taxa, we performed the first clade‐wide analyses of craniomandibular growth allometries in 359 specimens from 10 lemuroids and 176 specimens from 8 indrioids. Ontogenetic trajectories for extant forms were used as a criterion of subtraction to evaluate morphological variation, and putative adaptations among sister taxa. In other words, do species‐level differences in skull form result from the differential extension of common patterns of relative growth? In lemuroids, a pervasive pattern of ontogenetic scaling is observed for facial dimensions in all genera, with three genera also sharing relative growth trajectories for jaw proportions (Lemur, Eulemur, Varecia). Differences in masticatory growth and form characterizing Hapalemur and fossil Pachylemur likely reflect dietary factors. Pervasive ontogenetic scaling characterizes the facial skull in extant Indri, Avahi, and Propithecus, as well as their larger, extinct sister taxa Mesopropithecus and Babakotia. Significant interspecific differences are observed in the allometry of indrioid masticatory proportions, with variation in the mechanical advantage of the jaw adductors and stress‐resisting elements correlated with diet. As the growth series and adult data are largely coincidental in each clade, interspecific variation in facial form may result from selection for body‐size differentiation among sister taxa. Those cases where trajectories are discordant identify potential dietary adaptations linked to variation in masticatory forces during chewing and biting. Although such dissociations highlight selection to uncouple shared ancestral growth patterns, they occur largely via transpositions and retention of primitive size‐shape covariation patterns or relative growth coefficients. Am. J. Primatol. 72:161–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
《Comptes Rendus Palevol》2019,18(4):449-454
The saber-toothed cat Smilodon is a characteristic genus of the Pleistocene faunas of the American continent. Smilodon belongs to an extinct clade of felids that had hypertrophied blade-like upper canines. Because the length of the canines is so extreme, the killing bite of Smilodon is a hotly debated topic in vertebrate paleontology. Some authors have proposed that saber-toothed cats had a weak bite and their canines were fragile, not useful for attacking prey or penetrating bones. The aim of the present contribution is to describe two new specimens of Smilodon populator that have injuries on their skulls. Although it cannot be ruled out that the injuries were caused by a potential prey kicking the skull, the size, shape and general features of the injuries suggest that they were inflicted by the upper canines of another Smilodon individual during agonistic interactions.  相似文献   

15.
In the present study, we used linear morphometrics of the crania, mandible and dentition to explore the association between craniodental shape and prey size among 35 species of living felids. To accomplish this, felids were divided into three prey-size groups: (1) large prey specialists; (2) small prey specialists; and (3) mixed prey feeders. From these linear measurements, large prey specialist felids can be distinguished from small and mixed prey feeders by their relatively robust canines and incisors and relatively wide muzzles. These cranial characters are advantageous when dispatching large prey, due to the stranglehold that cats employ during this activity. Robust canines resist the bending and torsional forces applied by struggling prey and a wider muzzle helps to stabilize grip and distribute bite forces more evenly during the killing bite. Small prey specialists had smaller canines, narrower muzzles and slightly longer jaws for a speed advantage when catching small, quick prey. Mixed prey feeders were intermediate between large and small prey specialists, indicating they are adapted to killing both sizes of prey. Given the success of this ecomorphological analysis of living felids that specialize on different prey sizes, we look forward to applying this same approach to extinct species.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 784–799.  相似文献   

16.
To date, differences in craniofacial robusticity among modern and fossil humans have been primarily addressed by analyzing adult individuals; thus, the developmental basis of such differentiation remains poorly understood. This article aims to analyze the ontogenetic development of craniofacial robusticity in human populations from South America. Geometric morphometric methods were used to describe cranial traits in lateral view by using landmarks and semilandmarks. We compare the patterns of variation among populations obtained with subadults and adults to determine whether population‐specific differences are evident at early postnatal ontogeny, compare ontogenetic allometric trajectories to ascertain whether changes in the ontogeny of shape contribute to the differentiation of adult morphologies, and estimate the amount of size change that occurs during growth along each population‐specific trajectory. The results obtained indicate that the pattern of interpopulation variation in shape and size is already established at the age of 5 years, meaning that processes acting early during ontogeny contribute to the adult variation. The ontogenetic allometric trajectories are not parallel among all samples, suggesting the divergence in the size‐related shape changes. Finally, the extension of ontogenetic trajectories also seems to contribute to shape variation observed among adults. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Recent morphometric research has generated opposing conclusions regarding the ontogenetic trajectories of catarrhine crania, possibly due to the ontogenetic proxies used to calculate them. Therefore, we used three surrogates: size, molar eruption, and chronological age to generate trajectories in a known‐age sample to produce ontogenetic trajectories and determine the similarities and differences between them. Forty‐three landmarks from an ontogenetic series of 160 Macaca mulatta crania, with associated ages at death, were used to produce ontogenetic trajectories of cranial shape change. These were computed by sex through multivariate regression of Procrustes aligned coordinates against three surrogates for ontogeny: natural log of centroid size (growth), molar eruption stage (development), and chronological age. These trajectories were compared by calculating the angles between them. Each trajectory was also used to produce simulated adults from juveniles, which were then compared with each other and actual adults. The different trajectories are nearly parallel as each of the surrogates track similar aspects of ontogenetic cranial shape change, but chronological age was the most divergent. Simulated adults produced using the developmental stage trajectories were most similar to actual adults. When simulated adults were produced from opposite sex trajectories, they resembled the sex from which the trajectory was produced, not the sex of the juvenile specimen. We discuss properties of the trajectories produced from each of the surrogates, the possible reasons for previously opposing conclusions, how these properties can inform future investigations, and how our investigation bears on analyses of heterochrony.  相似文献   

18.
In recent years, advances in our understanding of feline relationships have cast light on their evolutionary history. In contrast, there have been no phylogenetic analyses on machairodont felids, making it difficult to develop an evolutionary hypothesis based on the recent surge of studies on their craniomandibular morphology and functional anatomy. In this paper, I provide the first phylogenetic hypothesis of machairodont relationships based on 50 craniomandibular and dental characters from a wide range of sabercats spanning more 11 Myr. Exact searches produced 19 most‐parsimonious trees, and a strict consensus was well resolved. The Machairodontinae comprise a number of basal taxa (Promegantereon, Machairodus, Nimravides, Dinofelis, Metailurus) and a well‐supported clade of primarily Plio‐Pleistocene taxa (Megantereon, Smilodon, Amphimachairodus, Homotherium, Xenosmilus) for which the name Eumachairodontia taxon novum is proposed. Previous phenetic grouping of machairodont taxa into three distinct groups, the Smilodontini, Homotherini and Metailurini, was not supported by cladistic parsimony analysis, and forcing monophyly of these groups was significantly incompatible with character distribution. Machairodonts as a clade are not characterized by saberteeth, i.e. hypertrophied, blade‐like upper canines, but by small lower canines, as well as small M1; and large P3 parastyle. True saberteeth arose later and are a synapomorphy of the Eumachairodontia.  相似文献   

19.
The degree to which the ontogeny of organisms could facilitate our understanding of phylogenetic relationships has long been a subject of contention in evolutionary biology. The famed notion that ‘ontogeny recapitulates phylogeny’ has been largely discredited, but there remains an expectation that closely related organisms undergo similar morphological transformations throughout ontogeny. To test this assumption, we used three‐dimensional geometric morphometric methods to characterize the cranial morphology of 10 extant crocodylian species and construct allometric trajectories that model the post‐natal ontogenetic shape changes. Using time‐calibrated molecular and morphological trees, we employed a suite of comparative phylogenetic methods to assess the extent of phylogenetic signal in these trajectories. All analyses largely demonstrated a lack of significant phylogenetic signal, indicating that ontogenetic shape changes contain little phylogenetic information. Notably, some Mantel tests yielded marginally significant results when analysed with the morphological tree, which suggest that the underlying signal in these trajectories is correlated with similarities in the adult cranial morphology. However, despite these instances, all other analyses, including more powerful tests for phylogenetic signal, recovered statistical and visual evidence against the assumption that similarities in ontogenetic shape changes are commensurate with phylogenetic relatedness and thus bring into question the efficacy of using allometric trajectories for phylogenetic inference.  相似文献   

20.

Background

The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading.

Methodology/Principal Findings

Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured.

Conclusions/Significance

Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protect the elongate canines from fracture and position the bite for a quick kill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号