首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.  相似文献   

2.
1,2-Diacetylbenzene (DAB) is a neurotoxic minor metabolite of 1,2-diethylbenzene or naphthalene reaction product with OH radical. DAB causes central and peripheral neuropathies that lead to motor neuronal deficits. However, the potent effects and molecular mechanisms of DAB on neural progenitor cells and hippocampus are unknown. In the current study, we report the DAB damage at lower doses (less than 50 μM) to neural progenitor cell (NPC) invitro and hippocampal neurogenesis invivo. DAB significantly suppressed NPC proliferation with increased reactive oxygen species (ROS) production in a dose-dependent manner. The suppression of NPC proliferation was effectively blunted by the action of an antioxidant, N-acetyl cysteine. Six-week-old male C57BL/6 mice were treated with 1 or 5 mg/kg DAB for 2 weeks. DAB significantly suppressed NPC proliferation in the dentate gyrus of the hippocampus, indicating impaired hippocampal neurogenesis. Increased ROS production and the formation of oxidative stress-associated dinitrophenyl adducts were detected in the hippocampal homogenates of DAB-treated mice. DAB activated Mac-1-positive immune cells which are involved in inflammatory process in the hippocampus. Taken together, these results confirm that oxidative stress by DAB might be cause of adverse effects in NPC proliferation and hippocampal neurogenesis.  相似文献   

3.
Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested FAs reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation.  相似文献   

4.
Sevoflurane anesthesia in infant rats can result in long-term cognitive impairment, possibly by inhibiting neurogenesis. The hippocampus is critical for memory consolidation and is one of only two mammalian brain regions where neural stem cells (NSCs) are renewed continuously throughout life. To elucidate the pathogenesis of sevoflurane-induced cognitive dysfunction, we measured the effects of clinical sevoflurane doses on the survival, proliferation, and differentiation of hippocampal NSCs. Neural stem cells were isolated from Sprague–Dawley rat embryos, expanded in vitro, and exposed to sevoflurane at 0.5, 1, or 1.5 minimal alveolar concentration (MAC) for 1 or 6 h. Two days after treatment, cell viability, cytotoxicity, and apoptosis rate were estimated by WST-1 assay, lactate dehydrogenase (LDH) activity, and TdT-mediated dUTP-biotin nick end labeling (TUNEL), respectively, while proliferation rate was assessed by 5-ethynyl-2′-deoxyuridine (BrdU) incorporation and Ki67 staining. Differentiation was assayed 7 days after treatment by immunocytochemistry and Western blots of neuron and glial markers. The phosphorylation level of p44/42 extracellular regulated kinases (ERK1/2) was measured in the proliferation and differentiation phases respectively. Sevoflurane at 1 MAC or 1.5 MAC for 1 h increased viable cell number whereas a 6 h exposure at these same concentrations suppressed proliferation and promoted apoptotic death (P < 0.01). Sevoflurane had no effect on NSC differentiation, and a sub-clinical concentration (0.5 MAC) altered neither proliferation nor viability. The phosphorylation level of ERK1/2 increased after 1 h of 1 MAC or 1.5 MAC of sevoflurane exposure in the proliferation phase, but not in the differentiation phase. Brief (1 h) exposure to sevoflurane at clinical concentrations enhanced proliferation of cultured NSCs possibly mediated by ERK1/2, but a 6 h exposure suppressed proliferation and induced apoptosis. Prolonged sevoflurane exposure may decrease the self-renewal capacity of hippocampal NSCs, resulting in cognitive deficits.  相似文献   

5.
The effect of KIOM-4, a combination of four plant extracts was assessed on streptozotocin (STZ) treated rat insulinoma (RIN5mF) cells in vitro. KIOM-4 scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS) induced by STZ. KIOM-4 prevented the STZ-induced DNA damage, which is detected using comet assay, Western blot and lipid peroxidation assays. KIOM-4 inhibited the STZ induced apoptosis, therefore protecting from cell death. Additionally, KIOM-4 induced the activation of catalase and extracellular regulated kinase (ERK). These results suggest that KIOM-4 protects RINm5F cells via radical scavenging activity, the activation of catalase and ERK against STZ induced oxidative stress.  相似文献   

6.
The intracellular signaling controlling neural stem/progenitor cell (NSC) self-renewal and neuronal/glial differentiation is not fully understood. We show here that Shp2, an introcellular tyrosine phosphatase with two SH2 domains, plays a critical role in NSC activities. Conditional deletion of Shp2 in neural progenitor cells mediated by Nestin-Cre resulted in early postnatal lethality, impaired corticogenesis, and reduced proliferation of progenitor cells in the ventricular zone. In vitro analyses suggest that Shp2 mediates basic fibroblast growth factor signals in stimulating self-renewing proliferation of NSCs, partly through control of Bmi-1 expression. Furthermore, Shp2 regulates cell fate decisions, by promoting neurogenesis while suppressing astrogliogenesis, through reciprocal regulation of the Erk and Stat3 signaling pathways. Together, these results identify Shp2 as a critical signaling molecule in coordinated regulation of progenitor cell proliferation and neuronal/astroglial cell differentiation.  相似文献   

7.
HCMV感染抑制人海马神经干细胞分化   总被引:1,自引:0,他引:1  
研究HCMV感染对体外培养的人海马源性神经干细胞(Neural stem cells,NSCs)分化的影响。体外分离、培养人海马NSCs,应用免疫荧光方法检测其NSCs标记物-巢蛋白(Nestin)的表达。10%胎牛血清诱导NSCs贴壁分化,同时用MOI为5的HCMV AD169株感染NSCs,7d后使用激光共聚焦显微镜免疫荧光方法检测Nestin、神经胶质纤维酸性蛋白(GFAP)和HCMV即刻早期蛋白(IE)的表达,计算阳性细胞比率。本实验所培养的细胞(4~6代)95±8%表达Nestin;分化诱导7d后,感染组86±12%细胞表达IE,未感染组和感染组Nestin阳性率分别为50±19%和93±10%(t=6.03,P<0.01),GFAP阳性细胞率分别为81±11%和55±17%(t=3.77,P<0.01)。以上结果表明分化过程中的NSCs是HCMV的容许细胞;HCMV感染可以抑制NSCs的分化。  相似文献   

8.
Sun C  Wang Z  Zheng Q  Zhang H 《Phytomedicine》2012,19(3-4):355-363
Oxidative stress plays an important role in tumorigenesis and metastasis. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Here we investigated the inhibitory effects of salidroside on tumor metastasis in human fibrosarcoma HT1080 cells in vitro. The results indicated that salidroside significantly reduced wound closure areas of HT1080 cells, inhibited HT1080 cells invasion into Matrigel-coated membranes, suppressed matrix metalloproteinases (MMP-2 and MMP-9) activity, and increased tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in a dose-dependent manner in HT1080 cells. Salidroside treatment upregulated the E-cadherin expression, while downregulated the expression of β1-integrin. As an antioxidant, salidroside inhibited the intracellular reactive oxygen species (ROS) formation in a dose-dependent manner. The results also showed that salidroside could inhibit the activation of protein kinase C (PKC) and the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in a dose-dependent manner. In conclusion, these results suggest that salidroside inhibits tumor cells metastasis, which may due to its interfere in the intracellular excess ROS thereby down-regulated the ROS-PKC-ERK1/2 signaling pathway.  相似文献   

9.
Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.  相似文献   

10.
An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer's disease, schizophrenia and Parkinson's disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS) remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG). These regions contain populations of quiescent neural stem cells (NSCs) that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ) of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.  相似文献   

11.
Koo BS  Lee WC  Chung KH  Ko JH  Kim CH 《Life sciences》2004,75(19):2363-2375
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The role of superoxide anion (O2*-) in neuronal cell injury induced by reactive oxygen species (ROS) was examined in PC12 cells using pyrogallol (1,2,3-benzenetrior), a donor to release O2*-. Pyrogallol induced PC12 cell death at concentrations, which evidently increased intracellular O2*-, as assessed by O2*- sensitive fluorescent precursor hydroethidine (HEt). A water extract of Curcuma longa L. (Zingiberaceae) (CLE), having O2*- scavenging activity rescued PC12 cells from pyrogallol-induced cell death. Hypoxia/reoxygenation injury of PC12 cells was also blocked by CLE. The present study was also conducted to examine the effect of CLE on H2O2 -induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H2O2 (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with CLE (0.5-10 microg/ml) prior to H2O2 exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (THA, 1 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. Further understanding of the underlying mechanism of the protective effects of these radical scavengers reducing intracellular O2*- on neuronal cell death may lead to development of new therapeutic treatments for hypoxic/ischemic brain injury.  相似文献   

12.
The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15-/- mice and the effects of acute IL-15 administration, coupled to 5-bromo-2'-deoxyuridine/5-ethynyl-2'-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ-rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15-/- NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle-regulatory proteins. Moreover, IL-15-deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component.  相似文献   

13.
14.
《Developmental neurobiology》2017,77(10):1206-1220
Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial‐like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2‐positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017  相似文献   

15.
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.  相似文献   

16.
Neural stem/progenitor cells (NSPCs) of the subgranular zone have been implicated in cognitive processes, which represent a potentially important source of regenerative medicine for the treatment of neurodegenerative diseases such as Alzheimer’s disease (AD). In our previous studies, ZY-1, a novel nicotinic analog, improved cognitive function in transgenic mice model of AD. However, the effect of ZY-1 on the NSPCs remains unclear. Here, we show that ZY-1 significantly increased proliferation and migration of NSPCs, but failed to affect NSPCs differentiation in vitro. Furthermore, during the proliferative period, ZY-1 enhanced intracellular reactive oxygen species (ROS) levels. Meanwhile, ZY-1 also inhibited the levels of Aβ42-induced ROS. Our data indicate that ZY-1 regulates adult hippocampal neurogenesis in vitro, at least partly due to modulating intracellular ROS levels. These results, taken together with those of our previous studies, suggest that ZY-1 might have a potential therapeutic effect for the treatment of AD.  相似文献   

17.
Apigenin has been reported to inhibit proliferation of cancer cells; however, the mechanism underlying its action is not completely understood. Here, we evaluated the effects of apigenin on the levels of expression and activity of antioxidant enzymes, and the involvement of ROS in the mechanism of cell death induced by apigenin in HepG2 human hepatoma cells. Upon treatment with apigenin, HepG2 cells displayed a reduction in cell viability in a dose- and time-dependent manner, and some morphological changes. In addition, apigenin treatment induced ROS generation and significantly decreased the mRNA levels and activity of catalase and levels of intracellular GSH. On the other hand, apigenin treatment did not alter the expression or activity levels of other antioxidant enzymes. Addition of exogenous catalase significantly reduced the effects of apigenin on HepG2 cell death. We also demonstrated that HepG2 cells are more sensitive to apigenin-mediated cell death than are primary cultures of mouse hepatocytes, suggesting a differential toxic effect of this agent in tumor cells. Our results suggest that apigenin-induced apoptosis in HepG2 cells may be mediated by a H2O2-dependent pathway via reduction of the antioxidant defenses.  相似文献   

18.

Background

The denervated hippocampus provides a proper microenvironment for the survival and neuronal differentiation of neural progenitors. While thousands of lncRNAs were identified, only a few lncRNAs that regulate neurogenesis in the hippocampus are reported. The present study aimed to perform microarray expression profiling to identify long noncoding RNAs (lncRNAs) that might participate in the hippocampal neurogenesis, and investigate the potential roles of identified lncRNAs in the hippocampal neurogenesis.

Results

In this study, the profiling suggested that 74 activated and 29 repressed (|log fold-change|>1.5) lncRNAs were differentially expressed between the denervated and the normal hippocampi. Furthermore, differentially expressed lncRNAs associated with neurogenesis were found. According to the tissue-specific expression profiles, and a novel lncRNA (lncRNA2393) was identified as a neural regulator in the hippocampus in this study. The expression of lncRNA2393 was activated in the denervated hippocampus. FISH showed lncRNA2393 specially existed in the subgranular zone of the dentate gyrus in the hippocampus and in the cytoplasm of neural stem cells (NSCs). The knockdown of lncRNA2393 depletes the EdU-positive NSCs. Besides, the increased expression of lncRNA2393 was found to be triggered by the change in the microenvironment.

Conclusion

We concluded that expression changes of lncRNAs exists in the microenvironment of denervated hippocampus, of which promotes hippocampal neurogenesis. The identified lncRNA lncRNA2393 expressed in neural stem cells, located in the subgranular zone of the dentate gyrus, which can promote NSCs proliferation in vitro. Therefore, the question is exactly which part of the denervated hippocampus induced the expression of lncRNA2393. Further studies should aim to explore the exact molecular mechanism behind the expression of lncRNA2393 in the hippocampus, to lay the foundation for the clinical application of NSCs in treating diseases of the central nervous system.
  相似文献   

19.
Recent references have showed crucial roles of several miRNAs in neural stem cell differentiation and proliferation. However, the expression and role of miR‐485‐3p remains unknown. In our reference, we indicated that miR‐485‐3p expression was down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, the TRIP6 expression was up‐regulated during NSCs differentiation to neural and astrocytes cell. We carried out the dual‐luciferase reporter and found that overexpression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, we indicated that miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be one promising therapy for treating with neurodegenerative and neurogenesis diseases.  相似文献   

20.
Species differences in susceptibility of islets to STZ in different mammals have been well documented. Likewise, failure of diabetes induction in birds by streptozotocin has been reported. We hypothesized that the susceptibility of islets to STZ treatment may be related to generation of reactive oxygen species (ROS) and their antioxidant defense mechanisms. To test this hypothesis, we measured the total ROS generated and estimated the damage caused to the chick islets due to STZ treatment, in terms of lipid peroxidation, protein carbonyl formation and DNA strand breaks and compared it with that of mouse islets. We also compared the activities of antioxidant enzymes like catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR) and amount of antioxidant molecules like reduced glutathione (GSH) and uric acid under control and STZ-treated conditions. These studies coupled with viability, functionality and presence of glucose transporter GLUT2 in chick and mouse islets clearly indicated that STZ treatment neither affects viability nor functionality of chick islets whereas those of mouse islets are affected significantly. Here we demonstrate for the first time a correlation between the generation of ROS on STZ treatment and antioxidant status with insensitivity of chick islets to STZ resulting into failure of diabetes induction in chick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号