首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Looker C  Carville K  Grant K  Kelly H 《PloS one》2010,5(10):e13702

Background

We characterise the clinical features and household transmission of pandemic influenza A (pH1N1) in community cases from Victoria, Australia in 2009.

Methods

Questionnaires were used to collect information on epidemiological characteristics, illness features and co-morbidities of cases identified in the 2009 Victorian Influenza Sentinel Surveillance program.

Results

The median age of 132 index cases was 21 years, of whom 54 (41%) were under 18 years old and 28 (21%) had medical co-morbidities. The median symptom duration was significantly shorter for children who received antivirals than in those who did not (p = 0.03). Assumed influenza transmission was observed in 63 (51%) households. Influenza-like illness (ILI) developed in 115 of 351 household contacts, a crude secondary attack rate of 33%. Increased ILI rates were seen in households with larger numbers of children but not larger numbers of adults. Multivariate analysis indicated contacts of cases with cough and diarrhoea, and contacts in quarantined households were significantly more likely to develop influenza-like symptoms.

Conclusion

Most cases of pH1N1 in our study were mild with similar clinical characteristics to seasonal influenza. Illness and case features relating to virus excretion, age and household quarantine may have influenced secondary ILI rates within households.  相似文献   

2.

Introduction

Although WHO declared the world moving into the post-pandemic period on August 10, 2010, influenza A(H1N1) 2009 virus continued to circulate globally. Its impact was expected to continue during the 2010–11 influenza season. This study describes the nationwide surveillance findings of the pandemic and post-pandemic influenza periods in Taiwan and assesses the impact of influenza A(H1N1) 2009 during the post-pandemic period.

Methods

The Influenza Laboratory Surveillance Network consisted of 12 contract laboratories for collecting and testing samples with acute respiratory tract infections. Surveillance of emergency room visits and outpatient department visits for influenza-like illness (ILI) were conducted using the Real-Time Outbreak and Disease Surveillance system and the National Health Insurance program data, respectively. Hospitalized cases with severe complications and deaths were reported to the National Notifiable Disease Surveillance System.

Results

During the 2009–10 influenza season, pandemic A(H1N1) 2009 was the predominant circulating strain and caused 44 deaths. However, the 2010–11 influenza season began with A(H3N2) being the predominant circulating strain, changing to A(H1N1) 2009 in December 2010. Emergency room and outpatient department ILI surveillance displayed similar trends. By March 31, 2011, there were 1,751 cases of influenza with severe complications; 50.1% reported underlying diseases. Of the reported cases, 128 deaths were associated with influenza. Among these, 93 (72.6%) were influenza A(H1N1) 2009 and 30 (23.4%) A(H3N2). Compared to the pandemic period, during the immediate post-pandemic period, increased number of hospitalizations and deaths were observed, and the patients were consistently older.

Conclusions

Reemergence of influenza A(H1N1) 2009 during the 2010–11 influenza season had an intense activity with age distribution shift. To further mitigate the impact of future influenza epidemics, Taiwan must continue its multifaceted influenza surveillance systems, remain flexible with antiviral use policies, and revise the vaccine policies to include the population most at risk.  相似文献   

3.
4.

Introduction

Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.

Methods

Personnel with FRI (defined as fever≥37.5°C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model.

Results

821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria.

Conclusions

Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.  相似文献   

5.

Background

There is limited information about the epidemiology of influenza in Africa. We describe the epidemiology and seasonality of influenza in Morocco from 1996 to 2009 with particular emphasis on the 2007–2008 and 2008–2009 influenza seasons. Successes and challenges of the enhanced surveillance system introduced in 2007 are also discussed.

Methods

Virologic sentinel surveillance for influenza virus was initiated in Morocco in 1996 using a network of private practitioners that collected oro-pharyngeal and naso-pharyngeal swabs from outpatients presenting with influenza-like-illness (ILI). The surveillance network expanded over the years to include inpatients presenting with severe acute respiratory illness (SARI) at hospitals and syndromic surveillance for ILI and acute respiratory infection (ARI). Respiratory samples and structured questionnaires were collected from eligible patients, and samples were tested by immunofluorescence assays and by viral isolation for influenza viruses.

Results

We obtained a total of 6465 respiratory specimens during 1996 to 2009, of which, 3102 were collected during 2007–2009. Of those, 2249 (72%) were from patients with ILI, and 853 (27%) were from patients with SARI. Among the 3,102 patients, 98 (3%) had laboratory-confirmed influenza, of whom, 85 (87%) had ILI and 13 (13%) had SARI. Among ILI patients, the highest proportion of laboratory-confirmed influenza occurred in children less than 5 years of age (3/169; 2% during 2007–2008 and 23/271; 9% during 2008–2009) and patients 25–59 years of age (8/440; 2% during 2007–2009 and 21/483; 4% during 2008–2009). All SARI patients with influenza were less than 14 years of age. During all surveillance years, influenza virus circulation was seasonal with peak circulation during the winter months of October through April.

Conclusion

Influenza results in both mild and severe respiratory infections in Morocco, and accounted for a large proportion of all hospitalizations for severe respiratory illness among children 5 years of age and younger.  相似文献   

6.

Background

Since its appearance in 2009, the pandemic influenza A(H1N1) virus circulated worldwide causing several severe infections.

Methods

Respiratory samples from patients with 2009 influenza A(H1N1) and acute respiratory distress attending 24 intensive care units (ICUs) as well as from patients with lower respiratory tract infections not requiring ICU admission and community upper respiratory tract infections in the Lombardy region (10 million inhabitants) of Italy during the 2010–2011 winter-spring season, were analyzed.

Results

In patients with severe ILI, the viral load was higher in bronchoalveolar lavage (BAL) with respect to nasal swab (NS), (p<0.001) suggesting a higher virus replication in the lower respiratory tract. Four distinct virus clusters (referred to as cluster A to D) circulated simultaneously. Most (72.7%, n = 48) of the 66 patients infected with viruses belonging to cluster A had a severe (n = 26) or moderate ILI (n = 22). Amino acid mutations (V26I, I116M, A186T, D187Y, D222G/N, M257I, S263F, I286L/M, and N473D) were observed only in patients with severe ILI. D222G/N variants were detected exclusively in BAL samples.

Conclusions

Multiple virus clusters co-circulated during the 2010–2011 winter-spring season. Severe or moderate ILI were associated with specific 2009 influenza A(H1N1) variants, which replicated preferentially in the lower respiratory tract.  相似文献   

7.

Background

In this study, we assess how effective pandemic and trivalent 2009-2010 seasonal vaccines were in preventing influenza-like illness (ILI) during the 2009 A(H1N1) pandemic in France. We also compare vaccine effectiveness against ILI versus laboratory-confirmed pandemic A(H1N1) influenza, and assess the possible bias caused by using non-specific endpoints and observational data.

Methodology and Principal Findings

We estimated vaccine effectiveness by using the following formula: VE  =  (PPV-PCV)/(PPV(1-PCV)) × 100%, where PPV is the proportion vaccinated in the population and PCV the proportion of vaccinated influenza cases. People were considered vaccinated three weeks after receiving a dose of vaccine. ILI and pandemic A(H1N1) laboratory-confirmed cases were obtained from two surveillance networks of general practitioners. During the epidemic, 99.7% of influenza isolates were pandemic A(H1N1). Pandemic and seasonal vaccine uptakes in the population were obtained from the National Health Insurance database and by telephonic surveys, respectively. Effectiveness estimates were adjusted by age and week. The presence of residual biases was explored by calculating vaccine effectiveness after the influenza period. The effectiveness of pandemic vaccines in preventing ILI was 52% (95% confidence interval: 30–69) during the pandemic and 33% (4–55) after. It was 86% (56–98) against confirmed influenza. The effectiveness of seasonal vaccines against ILI was 61% (56–66) during the pandemic and 19% (−10–41) after. It was 60% (41–74) against confirmed influenza.

Conclusions

The effectiveness of pandemic vaccines in preventing confirmed pandemic A(H1N1) influenza on the field was high, consistently with published findings. It was significantly lower against ILI. This is unsurprising since not all ILI cases are caused by influenza. Trivalent 2009-2010 seasonal vaccines had a statistically significant effectiveness in preventing ILI and confirmed pandemic influenza, but were not better in preventing confirmed pandemic influenza than in preventing ILI. This lack of difference might be indicative of selection bias.  相似文献   

8.

Background

In the third season of I-MOVE (Influenza Monitoring Vaccine Effectiveness in Europe), we undertook a multicentre case-control study based on sentinel practitioner surveillance networks in eight European Union (EU) member states to estimate 2010/11 influenza vaccine effectiveness (VE) against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza.

Methods

Using systematic sampling, practitioners swabbed ILI/ARI patients within seven days of symptom onset. We compared influenza-positive to influenza laboratory-negative patients among those meeting the EU ILI case definition. A valid vaccination corresponded to > 14 days between receiving a dose of vaccine and symptom onset. We used multiple imputation with chained equations to estimate missing values. Using logistic regression with study as fixed effect we calculated influenza VE adjusting for potential confounders. We estimated influenza VE overall, by influenza type, age group and among the target group for vaccination.

Results

We included 2019 cases and 2391 controls in the analysis. Adjusted VE was 52% (95% CI 30-67) overall (N = 4410), 55% (95% CI 29-72) against A(H1N1) and 50% (95% CI 14-71) against influenza B. Adjusted VE against all influenza subtypes was 66% (95% CI 15-86), 41% (95% CI -3-66) and 60% (95% CI 17-81) among those aged 0-14, 15-59 and ≥60 respectively. Among target groups for vaccination (N = 1004), VE was 56% (95% CI 34-71) overall, 59% (95% CI 32-75) against A(H1N1) and 63% (95% CI 31-81) against influenza B.

Conclusions

Results suggest moderate protection from 2010-11 trivalent influenza vaccines against medically-attended ILI laboratory-confirmed as influenza across Europe. Adjusted and stratified influenza VE estimates are possible with the large sample size of this multi-centre case-control. I-MOVE shows how a network can provide precise summary VE measures across Europe.  相似文献   

9.

Background

Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections.

Methods and Findings

Influenza activity data from 2003–04 through 2007–08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson''s correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson''s correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003–04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90).

Conclusions

This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003–04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior.  相似文献   

10.

Background

In 2009, a novel influenza virus (2009 pandemic influenza A (H1N1) virus (pH1N1)) caused significant disease in the United States. Most states, including Florida, experienced a large fall wave of disease from September through November, after which disease activity decreased substantially. We determined the prevalence of antibodies due to the pH1N1 virus in Florida after influenza activity had peaked and estimated the proportion of the population infected with pH1N1 virus during the pandemic.

Methods

During November-December 2009, we collected leftover serum from a blood bank, a pediatric children''s hospital and a pediatric outpatient clinic in Tampa Bay Florida. Serum was tested for pH1N1 virus antibodies using the hemagglutination-inhibition (HI) assay. HI titers ≥40 were considered seropositive. We adjusted seroprevalence results to account for previously established HI assay specificity and sensitivity and employed a simple statistical model to estimate the proportion of seropositivity due to pH1N1 virus infection and vaccination.

Results

During the study time period, the overall seroprevalence in Tampa Bay, Florida was 25%, increasing to 30% after adjusting for HI assay sensitivity and specificity. We estimated that 5.9% of the population had vaccine-induced seropositivity while 25% had seropositivity secondary to pH1N1 virus infection. The highest cumulative incidence of pH1N1 virus infection was among children aged 5–17 years (53%) and young adults aged 18–24 years (47%), while adults aged ≥50 years had the lowest cumulative incidence (11–13%) of pH1N1 virus infection.

Conclusions

After the peak of the fall wave of the pandemic, an estimated one quarter of the Tampa Bay population had been infected with the pH1N1 virus. Consistent with epidemiologic trends observed during the pandemic, the highest burdens of disease were among school-aged children and young adults.  相似文献   

11.
Zhou Y  Ng DM  Seto WH  Ip DK  Kwok HK  Ma ES  Ng S  Lau LL  Peiris JS  Cowling BJ 《PloS one》2011,6(11):e27169

Background

Healthcare workers in many countries are recommended to receive influenza vaccine to protect themselves as well as patients. A monovalent H1N1 vaccine became available in Hong Kong in December 2009 and around 10% of local healthcare workers had received the vaccine by February 2010.

Methods

We conducted a cross-sectional study of the prevalence of antibody to pandemic (H1N1) 2009 among HCWs in Hong Kong in February–March 2010 following the first pandemic wave and the pH1N1 vaccination campaign. In this study we focus on the subset of healthcare workers who reported receipt of non-adjuvanted monovalent 2009 H1N1 vaccine (Panenza, Sanofi Pasteur). Sera collected from HCWs were tested for antibody against the pH1N1 virus by hemagglutination inhibition (HI) and viral neutralization (VN) assays.

Results

We enrolled 703 HCWs. Among 104 HCWs who reported receipt of pH1N1 vaccine, 54% (95% confidence interval (CI): 44%–63%) had antibody titer ≥1∶40 by HI and 42% (95% CI: 33%–52%) had antibody titer ≥1∶40 by VN. The proportion of HCWs with antibody titer ≥1∶40 by HI and VN significantly decreased with age, and the proportion with antibody titer ≥1∶40 by VN was marginally significantly lower among HCWs who reported prior receipt of 2007–08 seasonal influenza vaccine (odds ratio: 0.43; 95% CI: 0.19–1.00). After adjustment for age, the effect of prior seasonal vaccine receipt was not statistically significant.

Conclusions

Our findings suggest that monovalent H1N1 vaccine may have had suboptimal immunogenicity in HCWs in Hong Kong. Larger studies are required to confirm whether influenza vaccine maintains high efficacy and effectiveness in HCWs.  相似文献   

12.

Background

Influenza-like illness (ILI) may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens.

Objectives

During the early weeks of the 2009–2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms.

Methods

H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire.

Results

From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5%) were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9%) were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%), followed by parainfluenza viruses (24.2%) and adenovirus (5.3%). 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens.

Conclusion

Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management.  相似文献   

13.

Background

Limited information exists on the epidemiology of acute febrile respiratory illnesses in tropical South American countries such as Venezuela. The objective of the present study was to examine the epidemiology of influenza-like illness (ILI) in two hospitals in Maracay, Venezuela.

Methodology/Principal Findings

We performed a prospective surveillance study of persons with ILI who presented for care at two hospitals in Maracay, Venezuela, from October 2006 to December 2010. A respiratory specimen and clinical information were obtained from each participant. Viral isolation and identification with immunofluorescent antibodies and molecular methods were employed to detect respiratory viruses such as adenovirus, influenza A and B, parainfluenza, and respiratory sincytial virus, among others. There were 916 participants in the study (median age: 17 years; range: 1 month – 86 years). Viruses were identified in 143 (15.6%) subjects, and one participant was found to have a co-infection with more than one virus. Influenza viruses, including pandemic H1N1 2009, were the most frequently detected pathogens, accounting for 67.4% (97/144) of the viruses detected. Adenovirus (15/144), parainfluenza virus (13/144), and respiratory syncytial virus (11/144) were also important causes of ILI in this study. Pandemic H1N1 2009 virus became the most commonly isolated influenza virus during its initial appearance in 2009. Two waves of the pandemic were observed: the first which peaked in August 2009 and the second - higher than the preceding - that peaked in October 2009. In 2010, influenza A/H3N2 re-emerged as the most predominant respiratory virus detected.

Conclusions/Significance

Influenza viruses were the most commonly detected viral organisms among patients with acute febrile respiratory illnesses presenting at two hospitals in Maracay, Venezuela. Pandemic H1N1 2009 influenza virus did not completely replace other circulating influenza viruses during its initial appearance in 2009. Seasonal influenza A/H3N2 was the most common influenza virus in the post-pandemic phase.  相似文献   

14.

Background

Differences in clinical presentation and outcomes among patients infected with pandemic 2009 influenza A H1N1 (pH1N1) compared to other respiratory viruses have not been fully elucidated.

Methodology/Principal Findings

A retrospective study was performed of all hospitalized patients at the peak of the pH1N1 season in whom a single respiratory virus was detected by a molecular assay targeting 18 viruses/subtypes (RVP, Luminex xTAG). Fifty-two percent (615/1192) of patients from October, 2009 to December, 2009 had a single respiratory virus (291 pH1N1; 207 rhinovirus; 45 RSV A/B; 37 parainfluenza; 27 adenovirus; 6 coronavirus; and 2 metapneumovirus). No seasonal influenza A or B was detected. Individuals with pH1N1, compared to other viruses, were more likely to present with fever (92% & 70%), cough (92% & 86%), sore throat (32% & 16%), nausea (31% & 8%), vomiting (39% & 30%), abdominal pain (14% & 7%), and a lower white blood count (8,500/L & 13,600/L, all p-values<0.05). In patients with cough and gastrointestinal complaints, the presence of subjective fever/chills independently raised the likelihood of pH1N1 (OR 10). Fifty-five percent (336/615) of our cohort received antibacterial agents, 63% (385/615) received oseltamivir, and 41% (252/615) received steroids. The mortality rate of our cohort was 1% (7/615) and was higher in individuals with pH1N1 compared to other viruses (2.1% & 0.3%, respectively; p = 0.04).

Conclusions/Significance

During the peak pandemic 2009–2010 influenza season in Rhode Island, nearly half of patients admitted with influenza-like symptoms had respiratory viruses other than influenza A. A high proportion of patients were treated with antibiotics and pH1N1 infection had higher mortality compared to other respiratory viruses.  相似文献   

15.
Xu C  Bai T  Iuliano AD  Wang M  Yang L  Wen L  Zeng Y  Li X  Chen T  Wang W  Hu Y  Yang L  Li Z  Zou S  Li D  Wang S  Feng Z  Zhang Y  Yu H  Yang W  Wang Y  Widdowson MA  Shu Y 《PloS one》2011,6(4):e17919

Background

Mainland China experienced pandemic influenza H1N1 (2009) virus (pH1N1) with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1.

Methodology/Principal Findings

Stored serum samples (n = 2,379) collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI) assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ≥40) was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%). Among unvaccinated participants, those aged 6-15 years (32.9%) and 16-24 years (30.3%) had higher seroprevalence compared with participants aged 25–59 years (10.7%) and ≥60 years (9.9%, P<0.0001). Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively). We estimated that 207.7 million individuals (15.9%) experienced pH1N1 infection in China.

Conclusions/Significance

The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.  相似文献   

16.
RN Guo  HZ Zheng  LQ Huang  Y Zhou  X Zhang  CK Liang  JY Lin  JF He  JQ Zhang 《PloS one》2012,7(7):e41403

Objectives

To understand the incidence of outpatient influenza cases in a subtropical area of China and the associated economic burden on patients'' families.

Methods

A hospital-based prospective study was conducted in Zhuhai City during 2008–2009. All outpatient influenza-like illness (ILI) cases were identified in 28 sentinel hospitals. A representative sample of throat swabs from ILI cases were collected for virus isolation using Madin-Darby canine kidney cells. The incidence of outpatient influenza cases in Zhuhai was estimated on the basis of the number of influenza patients detected by the sentinel sites. A telephone survey on the direct costs associated with illness was conducted as a follow-up.

Results

The incidence of influenza was estimated to be 4.1 per 1,000 population in 2008 and 19.2 per 1,000 population in 2009. Children aged <5 years were the most-affected population, suffering from influenza at the highest rates (34.3 per 1,000 population in 2008 and 95.3 per 1,000 population in 2009). A high incidence of 29.2–40.9 per 1000 population was also seen in young people aged 5–24 years in 2009. ILI activity and influenza virus isolations adopted a consistent seasonal pattern, with a summer peak in July 2008 and the longest epidemic period lasting from July–December 2009. The medical costs per episode of influenza among urban patients were higher than those for rural patients. A total of $1.1 million in direct economic losses were estimated to be associated with outpatient influenza during 2008–2009 in Zhuhai community.

Conclusions

Influenza attacks children aged <5 years in greater proportions than children in other age groups. Seasonal influenza 2008 and Pandemic influenza A (H1N1) 2009 had different epidemiological and etiological characteristics. Direct costs (mostly medical costs) impose an enormous burden on the patient family. Vaccination strategies for high-risk groups need to be further strengthened.  相似文献   

17.
18.

Background

The burden of the pandemic (H1N1) 2009 influenza might be underestimated if detection of the virus is mandated to diagnose infection. Using an alternate approach, we propose that a much higher pandemic burden was experienced in our institution.

Methodology/Principal Findings

Consecutive patients (n = 2588) presenting to our hospital with influenza like illness (ILI) or severe acute respiratory infection (SARI) during a 1-year period (May 2009–April 2010) were prospectively recruited and tested for influenza A by real-time RT-PCR. Analysis of weekly trends showed an 11-fold increase in patients presenting with ILI/SARI during the peak pandemic period when compared with the pre-pandemic period and a significant (P<0.001) increase in SARI admissions during the pandemic period (30±15.9 admissions/week) when compared with pre-pandemic (7±2.5) and post-pandemic periods (5±3.8). However, Influenza A was detected in less than one-third of patients with ILI/SARI [699 (27.0%)]; a majority of these (557/699, 79.7%) were Pandemic (H1N1)2009 virus [A/H1N1/09]. An A/H1N1/09 positive test was correlated with shorter symptom duration prior to presentation (p = 0.03). More ILI cases tested positive for A/H1N1/09 when compared with SARI (27.4% vs. 14.6%, P = 0.037). When the entire study population was considered, A/H1N1/09 positivity was associated with lower risk of hospitalization (p<0.0001) and ICU admission (p = 0.013) suggesting mild self-limiting illness in a majority.

Conclusion/Significance

Analysis of weekly trends of ILI/SARI suggest a higher burden of the pandemic attributable to A/H1N1/09 than estimates assessed by a positive PCR test alone. The study highlights methodological consideration in the estimation of burden of pandemic influenza in developing countries using hospital-based data that may help assess the impact of future outbreaks of respiratory illnesses.  相似文献   

19.
20.

Background

We describe the temporal variation in viral agents detected in influenza like illness (ILI) patients before and after the appearance of the ongoing pandemic influenza A (H1N1) (pH1N1) in Peru between 4-January and 13-July 2009.

Methods

At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW) 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD) in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chain-reaction (rRT-PCR).

Results

We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW) 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5%) from EW 19–28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima) followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle) cities during our study period. The city of Iquitos (Jungle) had the highest number of influenza B cases and only one pH1N1 case.

Conclusions

The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号