首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Avian hepatitis B virus infection is initiated by the specific interaction of the extracellular preS part of the large viral envelope protein with carboxypeptidase D (gp180), the primary cellular receptor. To functionally and biochemically characterize this interaction, we purified a soluble form of duck carboxypeptidase D from a baculovirus expression system, confirmed its receptor function, and investigated the contribution of different preS sequence elements to receptor binding by surface plasmon resonance analysis. We found that preS binds duck carboxypeptidase D with a 1:1 stoichiometry, thereby inducing conformational changes but not oligomerization. The association constant of the complex was determined to be 2.2 x 10(7) M-1 at 37 degreesC, pH 7.4, with an association rate of 4.0 x 10(4) M-1 s-1 and a dissociation rate of 1.9 x 10(-3) s-1, substantiating high affinity interaction of avihepadnaviruses with their receptor carboxypeptidase D. The separately expressed receptor-binding domain, comprising about 50% of preS as defined by mutational analysis, exhibits similar constants. The domain consists of an essential element, probably responsible for the initial receptor contact and a part that contributes to complex stabilization in a conformation sensitive manner. Together with previous results from cell biological studies these data provide new insights into the initial step of hepadnaviral infection.  相似文献   

2.
The entry of ecotropic murine leukemia virus (MLV) into cells requires the interaction of the envelope protein (Env) with its receptor, mouse cationic amino acid transporter 1 (mATRC1). An aspartic acid-to-lysine change at position 84 (D84K) of ecotropic Moloney MLV Env abolishes virus binding and infection. We recently identified lysine 234 (rK234) in mATRC1 as a residue that influences virus binding and infection. Here we show that D84K virus infection increased 3,000-fold on cells expressing receptor with an rK234A change and 100,000-fold on cells expressing an rK234D change. The stronger complementation of D84K virus infection by rK234D than by the rK234A receptor suggests that although the major reason for loss of infection of D84K and D84R virus is due to steric hindrance and charge repulsion, the loss of an interaction of D84 with receptor appears to contribute as well. Taken together, these results indicate that D84 is very close to rK234 of mATRC1 in the bound complex and there is likely an interaction between them. The definitive localization of the receptor binding site on SU should facilitate the design of chimeric envelope proteins that target infection to new receptors by replacing the receptor binding site with an exogenous ligand sequence.  相似文献   

3.
Surface antigen preS of Hepatitis B virus plays fundamental roles in mediating receptor recognition and virus internalization. Myristoylation at N-terminal Gly(2) residue of preS is essential for viral attachment and infectivity. A number of myristoylated proteins have been shown to undergo a conformational change (myristoyl switch) that alters their affinity to cell membrane. However, there is little knowledge about what effect this fatty acylation contributes in virus-host cell interaction. Here we demonstrated a new method for lipid modification of recombinant preS protein at N-terminal residue 2 with alkylating chemicals. Modified preS was able to inhibit HBV penetrating into HepG2 cells with an increased efficiency compared to unmodified form. Flow cytometric analysis indicated that lipid modification enhanced the binding affinity of preS to hepatocytes, but not resulting from hydrophobic interaction. CD analysis further revealed a conformational change of modified preS in the presence of membrane mimetics. These findings imply that the conformation transition induced by fatty acylation is important for efficient attachment of virus to cell receptors, and this method of chemical lipid modification provides a basis for designing therapeutic inhibitors to Hepatitis B virus.  相似文献   

4.
Virus-cell surface receptor interactions are of major interest. Hepadnaviruses are a family of partially double-stranded DNA viruses with liver tropism and a narrow host range of susceptibility to infection. At least in the case of duck hepatitis B virus (DHBV), host specificity seems controlled partly at the receptor level. The middle portion in the pre-S region of the viral large envelope protein binds specifically to duck carboxypeptidase D (DCPD) but not to its human or chicken homologue. Although domain C of DCPD is implicated in ligand binding, the exact pre-S contact site remains to be determined. We prepared and tested a panel of chimeric constructs consisting of DCPD and human carboxypeptidase D (HCPD). Our results indicate that a short region at the N terminus of domain C (residues 920 to 949) is critical to DHBV binding and is a major determinant for the host specificity of DHBV infection. Replacing this region of the DCPD molecule with its human homologue abolished the DHBV interaction, whereas introducing this DCPD sequence into HCPD conferred efficient DHBV binding. Extensive analysis of site-directed mutants revealed that both conserved and nonconserved residues were important for the pre-S interaction. There were primary sequence variations and secondary structural differences that contributed to the inability of HCPD to bind the DHBV pre-S domain.  相似文献   

5.
To study the kinetics and equilibrium of poliovirus binding to the poliovirus receptor, we used surface plasmon resonance to examine the interaction of a soluble form of the receptor with poliovirus. Soluble receptor purified from mammalian cells is able to bind poliovirus, neutralize viral infectivity, and induce structural changes in the virus particle. Binding studies revealed that there are two binding sites for the receptor on the poliovirus type 1 capsid, with affinity constants at 20 degrees C of K(D)(1) = 0.67 microm and K(D)(2) = 0.11 microm. The relative abundance of the two binding sites varies with temperature. At 20 degrees C, the K(D)(2) site constitutes approximately 46% of the total binding sites on the sensor chip, and its relative abundance decreased with decreasing temperature such that at 5 degrees C, the relative abundance of the K(D)(2) site is only 12% of the total binding sites. Absolute levels of the K(D)(1) site remained relatively constant at all temperatures tested. The two binding sites may correspond to docking sites for domain 1 of the receptor on the viral capsid, as predicted by a model of the poliovirus-receptor complex. Alternatively, the binding sites may be a consequence of structural breathing, or could result from receptor-induced conformational changes in the virus.  相似文献   

6.
Endosomal sorting complexes required for transport (ESCRTs) regulate diverse processes ranging from receptor sorting at endosomes to distinct steps in cell division and budding of some enveloped viruses. Common to all processes is the membrane recruitment of ESCRT-III that leads to membrane fission. Here, we show that CC2D1A is a novel regulator of ESCRT-III CHMP4B function. We demonstrate that CHMP4B interacts directly with CC2D1A and CC2D1B with nanomolar affinity by forming a 1:1 complex. Deletion mapping revealed a minimal CC2D1A-CHMP4B binding construct, which includes a short linear sequence within the third DM14 domain of CC2D1A. The CC2D1A binding site on CHMP4B was mapped to the N-terminal helical hairpin. Based on a crystal structure of the CHMP4B helical hairpin, two surface patches were identified that interfere with CC2D1A interaction as determined by surface plasmon resonance. Introducing these mutations into a C-terminal truncation of CHMP4B that exerts a potent dominant negative effect on human immunodeficiency virus type 1 budding revealed that one of the mutants lost this effect completely. This suggests that the identified CC2D1A binding surface might be required for CHMP4B polymerization, which is consistent with the finding that CC2D1A binding to CHMP4B prevents CHMP4B polymerization in vitro. Thus, CC2D1A might act as a negative regulator of CHMP4B function.  相似文献   

7.
alpha-Dystroglycan (DG) has been identified as the cellular receptor for lymphocytic choriomeningitis virus (LCMV) and Lassa fever virus (LFV). This subunit of DG is a highly versatile cell surface molecule that provides a molecular link between the extracellular matrix (ECM) and a beta-DG transmembrane component, which interacts with the actin-based cytoskeleton. In addition, DG exhibits a complex pattern of interaction with a wide variety of ECM and cellular proteins. In the present study, we characterized the binding of LCMV to alpha-DG and addressed the role of alpha-DG-associated host-derived proteins in virus infection. We found that the COOH-terminal region of alpha-DG's first globular domain and the NH2-terminal region of the mucin-related structures of alpha-DG together form the binding site for LCMV. The virus-alpha-DG binding unlike ECM alpha-DG interactions was not dependent on divalent cations. Despite such differences in binding, LCMV and laminin-1 use, in part, an overlapping binding site on alpha-DG, and the ability of an LCMV isolate to compete with laminin-1 for receptor binding is determined by its binding affinity to alpha-DG. This competition of the virus with ECM molecules for receptor binding likely explains the recently found correlation between the affinity of LCMV binding to alpha-DG, tissue tropism, and pathological potential. LCMV strains and variants with high binding affinity to alpha-DG but not low affinity binders are able to infect CD11c+ dendritic cells, which express alpha-DG at their surface. Infection followed by dysfunction of these antigen-presenting cells contributes to immunosuppression and persistent viral infection in vivo.  相似文献   

8.
IL-10 is a dimeric cytokine that must engage its high-affinity cell surface receptor, IL-10R1, to induce multiple cellular activities. Here we report the 1.9 A crystal structure of an engineered IL-10 monomer (IL-10M1) in complex with a neutralizing Fab fragment (9D7Fab). 9D7Fab and IL-10R1 bind distinct nonoverlapping surfaces on IL-10M1. Antagonism of the IL-10M1/IL-10R1 interaction is the result of 9D7Fab-induced conformational changes in the CD loop of IL-10M1 that indirectly alter the structure of the IL-10R1 binding site. A single mutation (Ile87Ala) in the same CD loop region of the Epstein-Barr virus IL-10 (ebvIL-10) also reduces IL-10R1 binding affinity, suggesting that ebvIL-10 and 9D7Fab use similar allosteric mechanisms to modulate IL-10R1 affinity and biological activity.  相似文献   

9.
The N-terminal portion of the large envelope protein of the human hepatitis B virus (HBV), the preS1 domain, plays a fundamental role in cell attachment and infectivity. Recent investigations have suggested that myristylation of preS1 Gly2 residue is essential for viral infectivity, but the importance of this post-translational modification on HBV-receptor interaction has not been elucidated completely. In this study we produced, using stepwise solid-phase chemical synthesis, the entire preS1[1-119] domain (adw2 subtype), and compared its receptor binding activity with the myristylated form, myristyl-preS1[2-119] in order to define the importance of fatty acid modification. Both synthetic proteins were fully characterized in terms of structural identity using TOF-MALDI mass spectrometry and analysis of tryptic fragments. Circular dichroism measurements indicated a low content of ordered structure in the preS1 protein, while the propensity of the myristylated derivative to assume a conformationally defined structure was more evident. HBV-receptor binding assays performed with plasma membranes preparations from the hepatocyte carcinoma cell line HepG2 clearly showed that the preS1[1-119] domain recognizes the HBV receptor, and confirmed that binding is occurring through the 21-47 region. The myristylated derivative recognized HBV receptor preparations with higher affinity than the preS1 domain, suggesting that the conformational transitions induced in the preS1 moiety by fatty acid post-translational modification are important for efficient attachment of viral particles to HBV receptors.  相似文献   

10.
A systematic mutational analysis of human interferon-beta-1a (IFN-beta) was performed to identify regions on the surface of the molecule that are important for receptor binding and for functional activity. The crystal structure of IFN-beta-1a was used to design a panel of 15 mutant proteins, in each of which a contiguous group of 2-8 surface residues was mutated, in most instances to alanine. The mutants were analyzed for activity in vitro in antiviral and in antiproliferation assays, and for their ability to bind to the type I IFN (ifnar1/ifnar2) receptor on Daudi cells and to a soluble ifnar2 fusion protein (ifnar2-Fc). Abolition of binding to ifnar2-Fc for mutants A2, AB1, AB2, and E established that the ifnar2 binding site on IFN-beta comprises parts of the A helix, the AB loop, and the E helix. Mutations in these areas, which together define a contiguous patch of the IFN-beta surface, also resulted in reduced affinity for binding to the receptor on cells and in reductions in activity of 5-50-fold in functional assays. A second receptor interaction site, concluded to be the ifnar1 binding site, was identified on the opposite face of the molecule. Mutations in this region, which encompasses parts of the B, C, and D helices and the DE loop, resulted in disparate effects on receptor binding and on functional activity. Analysis of antiproliferation activity as a function of the level of receptor occupancy allowed mutational effects on receptor activation to be distinguished from effects on receptor binding. The results suggest that the binding energy from interaction of IFN-beta with ifnar2 serves mainly to stabilize the bound IFN/receptor complex, whereas the binding energy generated by interaction of certain regions of IFN-beta with ifnar1 is not fully expressed in the observed affinity of binding but instead serves to selectively stabilize activated states of the receptor.  相似文献   

11.
12.
The efficient inactivation of urokinase plasminogen activator (uPA) by plasminogen activator inhibitor type 2 (PAI-2) at the surface of carcinoma cells is followed by rapid endocytosis of the uPA-PAI-2 complex. We now show that one pathway of this receptor-mediated endocytosis is mediated via the low density lipoprotein receptor-related protein (LRP) in prostate cancer cells. Detailed biochemical analyses using ligand binding assays and surface plasmon resonance revealed a novel and distinct interaction mechanism between native, human LRP and uPA-PAI-2. As reported previously for PAI-1, inhibition of uPA by PAI-2 significantly increased the affinity of the complex for LRP (K(D) of 36 nm for uPA-PAI-2 versus 200 nm for uPA). This interaction was maintained in the presence of uPAR, confirming the validity of this interaction at the cell surface. However, unlike PAI-1, no interaction was observed between LRP and PAI-2 in either the stressed or the relaxed conformation. This suggests that the uPA-PAI-2-LRP interaction is mediated by site(s) within the uPA molecule alone. Thus, as inhibition of uPA by PAI-2 resulted in accelerated clearance of uPA from the cell surface possibly via its increased affinity for LRP, this represents a mechanism through which PAI-2 can clear proteolytic activity from the cell surface. Furthermore, lack of a direct interaction between PAI-2 and LRP implies that downstream signaling events initiated by PAI-1 may not be activated by PAI-2.  相似文献   

13.
A direct involvement of the hepatitis B virus (HBV) preS1-(21-47) sequence in virus attachment to cell membrane receptor(s) and the presence on the plasma membranes of HepG2 cells of protein(s) with receptor activity for HBV have been suggested by many previous experiments. In this study, by using a tetravalent derivative of the preS1-(21-47) sequence, we have isolated by affinity chromatography from detergent-solubilized HepG2 plasma membranes a 44-kDa protein (HBV-binding protein; HBV-BP), which was found to closely correspond to the human squamous cell carcinoma antigen 1 (SCCA1), a member of the ovalbumin family of serine protease inhibitors. Comparison of SCCA1 sequence with the sequence of the corresponding HBV-BP cDNA, cloned by polymerase chain reaction starting from RNA poly(A)(+) fractions extracted from HepG2 cells, indicated the presence of only four nucleotide substitutions in the coding region, leading to three amino acid changes. Intact recombinant HBV-BP lacked inhibitory activity for serine proteases such as alpha-chymotrypsin and trypsin but inhibited with high potency cysteine proteases such as papain and cathepsin L. Direct binding experiments confirmed the interaction of recombinant HBV-BP with the HBV preS1 domain. HepG2 cells overexpressing HBV-BP after transfection of corresponding cDNA showed a virus binding capacity increased by 2 orders of magnitude compared with untransfected cells, while Chinese hamster ovary cells, which normally do not bind to HBV, acquired susceptibility to HBV binding after transfection. Native HBV particle entry was enhanced in transfected cells. Both recombinant HBV-BP and antibodies to recombinant HBV-BP blocked virus binding and internalization in transfected cells as well as in primary human hepatocytes in a dose-dependent manner. Our findings suggest that this protein plays a major role in HBV infection.  相似文献   

14.
15.
Role of glycosaminoglycans for binding and infection of hepatitis B virus   总被引:3,自引:0,他引:3  
Many parts of the life cycle of hepatitis B virus (HBV) infection of hepatocytes have been unravelled, but the attachment and entry process leading to infection is largely unknown. Using primary Tupaia hepatocyte cultures as an in vitro infection system, we determined that HBV uses cell-surface heparan sulfate proteoglycans as low-affinity receptor, because HBV infection was inhibited by heparin (IC50: 5 μg ml−1) or other higher-sulfated polymers, but not by lower-sulfated glycosaminoglycans, such as chondroitin sulfate. Pretreatment of primary hepatocytes with heparinase decreased viral binding and inhibited HBV infection completely. Interestingly, after preS1-dependent viral binding at 16°C to the cell surface, subsequent infection could still be inhibited by HBV preS1-lipopeptides, but not by heparin any more, suggesting a shift of the virus to a high-affinity receptor. In summary, we suggest following multistep attachment process: in vivo , HBV is initially trapped within the liver in the space of Dissé by heparan sulfate proteoglycans. Thereafter, HBV binds via its preS1 attachment site and the N-terminal myristic acid to a yet unknown, high-affinity receptor that confers uptake in a yet unknown compartment.  相似文献   

16.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

17.
D222G mutation of the hemagglutinin (HA) is of special interest because of its close association with the enhanced virulence of 2009 pandemic influenza A (H1N1) virus through the increased binding affinity to α2,3-linked sialylated glycan receptors. However, there is still a lack of detailed understanding about the molecular mechanism of this enhanced virulence. Here, molecular dynamics simulation and binding free energy calculation were performed to explore the altered glycan receptor binding mechanism of HA upon the D222G mutation by studying the interaction of one α2,3-linked sialylglycan (sequence: SIA-GAL-NAG) with the wild type and D222G mutated HA. The binding free energy calculation based on the molecular mechanics generalized Born surface area (MM-GBSA) method indicates that the D222G mutated HA has a much stronger binding affinity with the studied α2,3-linked glycan than the wild type. This is consistent with the experimental result. The increased binding free energy of D222G mutant mainly comes from the increased energy contribution of Gln223. The structural analysis proves that the altered electrostatic potential of receptor binding domain (RBD) and the increased flexibility of 220-loop are the essential reasons leading to the increased affinity of HA to α2,3-linked sialic acid glycans. The obtained results of this study have allowed a deeper understanding of the receptor recognition mechanism and the pathogenicity of influenza virus, which will be valuable to the structure-based inhibitors design targeting influenza virus entry process.  相似文献   

18.
Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction.  相似文献   

19.
Adenovirus fibers from most serotypes bind the D1 domain of coxsackie and adenovirus receptor (CAR), although the binding residues are not strictly conserved. To understand this further, we determined the crystal structures of canine adenovirus serotype 2 (CAV-2) and the human adenovirus serotype 37 (HAd37) in complex with human CAR D1 at 2.3 and 1.5A resolution, respectively. Structure comparison with the HAd12 fiber head-CAR D1 complex showed that the overall topology of the interaction is conserved but that the interfaces differ in number and identity of interacting residues, shape complementarity, and degree of conformational adaptation. Using surface plasmon resonance, we characterized the binding affinity to CAR D1 of wild type and mutant CAV-2 and HAd37 fiber heads. We found that CAV-2 has the highest affinity but fewest direct interactions, with the reverse being true for HAd37. Moreover, we found that conserved interactions can have a minor contribution, whereas serotype-specific interactions can be essential. These results are discussed in the light of virus evolution and design of adenovirus vectors for gene transfer.  相似文献   

20.
A number of secreted cytokines, such as interleukin-6 (IL-6), are attractive targets for the treatment of inflammatory diseases. We have determined the solution structure of mouse IL-6 to assess the functional significance of apparent differences in the receptor interaction sites (IL-6Rα and gp130) suggested by the fairly low degree of sequence similarity with human IL-6. Structure-based sequence alignment of mouse IL-6 and human IL-6 revealed surprising differences in the conservation of the two distinct gp130 binding sites (IIa and IIIa), which suggests a primacy for site III-mediated interactions in driving initial assembly of the IL-6/IL-6Rα/gp130 ternary complex. This is further supported by a series of direct binding experiments, which clearly demonstrate a high affinity IL-6/IL-6Rα-gp130 interaction via site III but only weak binding via site II. Collectively, our findings suggest a pathway for the evolution of the hexameric, IL-6/IL-6Rα/gp130 signaling complex and strategies for therapeutic targeting. We propose that the signaling complex originally involved specific interactions between IL-6 and IL-6Rα (site I) and between the D1 domain of gp130 and IL-6/IL-6Rα (site III), with the later inclusion of interactions between the D2 and D3 domains of gp130 and IL-6/IL-6Rα (site II) through serendipity. It seems likely that IL-6 signaling benefited from the evolution of a multipurpose, nonspecific protein interaction surface on gp130, now known as the cytokine binding homology region (site II contact surface), which fortuitously contributes to stabilization of the IL-6/IL-6Rα/gp130 signaling complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号