首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Hox genes play a central role in the specification of distinct segmental identities in the body of arthropods. The specificity of Hox genes depends on their restricted expression domains, their interaction with specific cofactors and selectivity for particular target genes. spalt genes are associated with the function of Hox genes in diverse species, but the nature of this association varies: in some cases, spalt collaborates with Hox genes to specify segmental identities, in others, it regulates Hox gene expression or acts as their target. Here we study the role of spalt in the branchiopod crustacean Artemia franciscana. We find that Artemia spalt is expressed in the pre-segmental 'growth zone' and in stripes in each of the trunk (thoracic, genital and post-genital) segments that emerge from this zone. Using RNA interference (RNAi), we show that knocking down the expression of spalt has pleiotropic effects, which include thoracic to genital (T-->G), genital to thoracic (G-->T) and post-genital to thoracic (PG-->T) homeotic transformations. These transformations are associated with a stochastic de-repression of Hox genes in the corresponding segments of RNAi-treated animals (AbdB for T-->G and Ubx/AbdA for G-->T and PG-->T transformations). We discuss a possible role of spalt in the maintenance of Hox gene repression in Artemia and in other animals.  相似文献   

2.
3.
In Drosophila, the Hox gene Abdominal-B is required to specify the posterior abdomen and the genitalia. Homologues of Abdominal-B in other species are also needed to determine the posterior part of the body. We have studied the function of Abdominal-B in the formation of Drosophila genitalia, and show here that absence of Abdominal-B in the genital disc of Drosophila transforms male and female genitalia into leg or, less frequently, into antenna. These transformations are accompanied by the ectopic expression of genes such as Distal-less or dachshund, which are normally required in these appendages. The extent of wild-type and ectopic Distal-less expression depends on the antagonistic activities of the Abdominal-B gene, as a repressor, and of the decapentaplegic and wingless genes as activators. Absence of Abdominal-B also changes the expression of Homothorax, a Hox gene co-factor. Our results suggest that Abdominal-B forms genitalia by modifying an underlying positional information and repressing appendage development. We propose that the genital primordia should be subdivided into two regions, one of them competent to be transformed into an appendage in the absence of Abdominal-B.  相似文献   

4.
The Caenorhabditis elegans body axis, like that of other animals, is patterned by the action of Hox genes. In order to examine the function of one C. elegans Hox gene in depth, we determined the postembryonic expression pattern of egl-5, the C. elegans member of the Abdominal-B Hox gene paralog group, by means of whole-mount staining with a polyclonal antibody. A major site of egl-5 expression and function is in the epithelium joining the posterior digestive tract with the external epidermis. Patterning this region and its derived structures is a conserved function of Abd-B paralog group genes in other animals. Cells that initiate egl-5 expression during embryogenesis are clustered around the presumptive anus. Expression is initiated postembryonically in four additional mesodermal and ectodermal cell lineages or tissues. Once initiated in a lineage, egl-5 expression continues throughout development, suggesting that the action of egl-5 can be regarded as defining a positional cell identity. A variety of cross-regulatory interactions between egl-5 and the next more anterior Hox gene, mab-5, help define the expression domains of their respective gene products. In its expression in a localized body region, function as a marker of positional cell identity, and interactions with another Hox gene, egl-5 resembles Hox genes of other animals. This suggests that C. elegans, in spite of its small cell number and reproducible cell lineages, may not differ greatly from other animals in the way it employs Hox genes for regional specification during development.  相似文献   

5.
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.  相似文献   

6.
M Kessel  P Gruss 《Cell》1991,67(1):89-104
Exposure of murine embryos to teratogenic doses of retinoic acid (RA) induced homeotic transformations of vertebrae. Posterior transformations occurred along the complete body axis after RA administration on day 7 of gestation and were accompanied by anterior shifts of Hox gene expression domains in embryos. Anterior transformations of vertebrae in the caudal half of the vertebral column were induced on day 8.5. We suggest that the identity of a vertebral segment is specified by a combination of functionally active Hox genes, a "Hox code." In this concept the sequential activation of Hox genes defines sequentially more posterior axial levels, while mesodermal cells leave the primitive streak. Exogenous RA interferes with the normal establishment of Hox codes and thus with axial specification.  相似文献   

7.
8.
Jeong S  Rokas A  Carroll SB 《Cell》2006,125(7):1387-1399
Hox genes have been implicated in the evolution of many animal body patterns, but the molecular events underlying trait modification have not been elucidated. Pigmentation of the posterior male abdomen is a recently acquired trait in the Drosophila melanogaster lineage. Here, we show that the Abdominal-B (ABD-B) Hox protein directly activates expression of the yellow pigmentation gene in posterior segments. ABD-B regulation of pigmentation evolved through the gain of ABD-B binding sites in a specific cis-regulatory element of the yellow gene of a common ancestor of sexually dimorphic species. Within the melanogaster species group, male-specific pigmentation has subsequently been lost by at least three different mechanisms, including the mutational inactivation of a key ABD-B binding site in one lineage. These results demonstrate how Hox regulation of traits and target genes is gained and lost at the species level and have general implications for the evolution of body form at higher taxonomic levels.  相似文献   

9.
10.
In order to address the question of the conservation of posterior growth mechanisms in bilaterians, we have studied the expression patterns of the orthologues of the genes caudal, even-skipped, and brachyury in the annelid Platynereis dumerilii. Annelids belong to the still poorly studied third large branch of the bilaterians, the lophotrochozoans, and have anatomic and developmental characteristics, such as a segmented body plan, indirect development through a microscopic ciliated larva, and building of the trunk through posterior addition, which are all hypothesized by some authors (including us) to be present already in Urbilateria, the last common ancestor of bilaterians. All three genes are shown to be likely involved in the building of the anteroposterior axis around the slit-like amphistomous blastopore as well as in the patterning of the terminal anus-bearing piece of the body (the pygidium). In addition, caudal and even-skipped are likely involved in the posterior addition of segments. Together with the emerging results on the conservation of segmentation genes, these results reinforce the hypothesis that Urbilateria had a segmented trunk developing through posterior addition.  相似文献   

11.
12.
Respecification of vertebral identities by retinoic acid.   总被引:17,自引:0,他引:17  
  相似文献   

13.
14.
15.
16.
Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.  相似文献   

17.
18.
In Drosophila, the Ultrabithorax, abdominal-A and Abdominal-B HOX genes of the bithorax complex determine the identity of part of the thorax and the whole abdomen. Either the absence of these genes or their ectopic expression transform segments into the identity of different ones along the antero-posterior axis. Here we show that misexpression of Ultrabithorax, abdominal-A and, to some extent, Abdominal-B genes cause similar transformations in some of the fruitfly appendages: antennal tissue into leg tissue and wing tissue into haltere tissue. abdominal-A can fully, and Abdominal-B partially, substitute for Ultrabithorax in haltere development. By contrast, when ectopically expressed, the three genes specify different segments in regions of the main body axis like notum or abdomen. Insects may have originally used the HOX genes primarily to specify this main body axis. By contrast, the homeotic requirement to form appendages is, in some cases, non-specific.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号